

MOS INTEGRATED CIRCUIT μ PD78P4916

16-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78P4916 is one of the μ PD784915 subseries in the 78K/IV Series microcontrollers which incorporate a high-speed and high-performance 16-bit CPU.

The μ PD78P4916 replaces mask ROM with one-time PROM and increases on-chip ROM and RAM capacity compared to the μ PD784915.

It is suitable for evaluation at system development and for small quantity production.

Detailed descriptions of functions are provided in the following user's manuals. Be sure to read these documents when designing.

 μ PD784915 Subseries User's Manual – Hardware : U10444E 78K/IV Series User's Manual – Instruction : U10905E

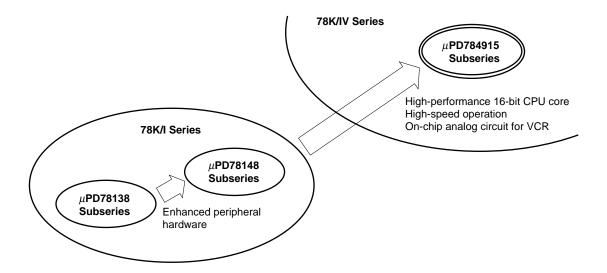
FEATURES

- O High-speed instruction execution using 16-bit CPU core
 - Minimum instruction execution time: 250 ns (at 8-MHz internal clock)
- On-chip high capacity memory

PROM: 62 Kbytes Note

RAM : 2048 bytes Note

Note It is possible to change the capacity of the internal PROM and the internal RAM by specifying the internal memory capacity select (IMS) register.


ORDERING INFORMATION

Part Number	Package
μPD78P4916GF-3BA	100-pin plastic QFP (14 $ imes$ 20 mm)

The information in this document is subject to change without notice.

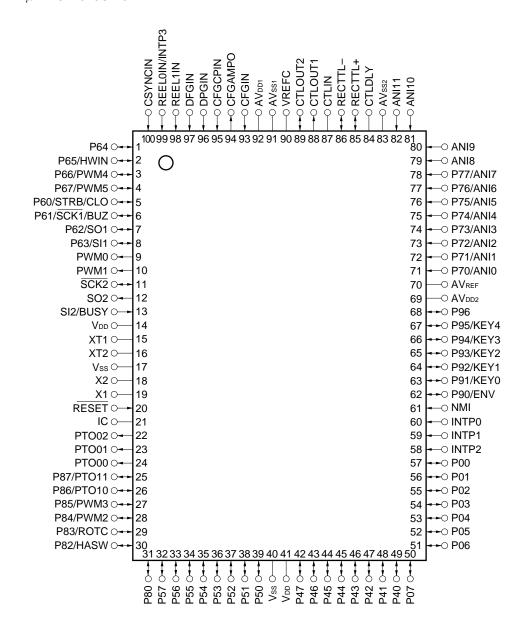
78K/IV Series Products

Function List (1/2)

	Item Function						
Internal	PROM capacity	62 Kbytes Note					
Internal	RAM capacity	2048 bytes Note					
Operation	on clock	16 MHz (Internal clock: 8 MHz) Low frequency oscillation mode: 8 MHz (Internal clock: 8 MHz) Low power consumption mode: 32.768 kHz (Subsystem clock)					
Minimum	instruction execution time	250 ns (at 8-MHz	z internal clock)				
I/O ports	S	Total: 54 Inpu					
Real-tim	e output port	11 (including 3 or nance rotate)	utputs each for Pseud	do-Vsync, Head amplifie	r switch, and Chromi-		
Super	Timer/counter	Timer/counter	Compare register	Capture register	Remark		
timer		TM0 (16-bit)	3	_			
unit		TM1 (16-bit)	3	1			
		FRC (22-bit)	_	6			
		TM3 (16-bit)	2	1			
		UDC (5-bit)	1	-			
		EC (8-bit)	4	-	Generates HSW signal		
		EDV (8-bit)	1	_	Divides CFG signal		
	Capture register	Input signal	Number of bits	Measurement cycle	Operation edge		
		CFG	22	125 ns to 524 ms	\uparrow \downarrow		
		DFG	22	125 ns to 524 ms	\uparrow		
		HSW	16	1 μ s to 65.5 ms	\uparrow \downarrow		
		Vsync	22	125 ns to 524 ms	\uparrow		
		CTL	16	1 μ s to 65.5 ms	\uparrow \downarrow		
		TREEL	22	125 ns to 524 ms	\uparrow \downarrow		
		SREEL	22	125 ns to 524 ms	\uparrow \downarrow		
	Special circuit for VCR	VISS detector,Field identifier	r, Hsync separator Wide-aspect detecto switch/chrominance				
	General purpose timer	Timer	Compare reg	ister Capture re	egister		
		TM2 (16-bit) TM4 (16-bit) TM5 (16-bit)					
PWM output • 16-bit precision: 3 channels (Carrier frequency: 62.5 kHz) • 8-bit precision: 3 channels (Carrier frequency: 62.5 kHz)							
Serial ir	terface	3-wire serial I/O: • BUSY/STRB co	2 channels ontrol available (only	1 channel)			
A/D con	verter	8-bit resolution ×	12 channels, convers	sion time: 10 μs			

Note It is possible to change the capacity of the internal PROM and the internal RAM by specifying the internal memory capacity select (IMS) register.

Function List (2/2)


	Item	Function
Anal	og unit	 CTL amplifier RECCTL driver (supports re-write operation) DFG amplifier, DPG comparator, CFG amplifier DPFG separator (Three-value) Reel FG comparator (2 channels) CSYNC comparator
Inter	rupt	Programmable 4 levels, vectored interrupt, macro service, context switching
External		9 (including NMI)
	Internal	19 (including software interrupt)
Standby function		HALT mode/STOP mode Low-power consumption mode: HALT mode
		Release from STOP mode by NMI pin's active edge, Watch interrupt (INTW), or INTP1/INTP2/KEY0-KEY4 pins' input.
Watch function		0.5-sec interval, capable of low-voltage operation (VDD = 2.7 V)
Pow	er supply voltage	V _{DD} = 2.7 to 5.5 V
Pack	cage	100-pin plastic QFP (14 × 20 mm)

*

*

Pin Configuration (Top View)

- (1) Normal Operation Mode
 - 100-pin plastic QFP (14 \times 20 mm) μ PD78P4916GF-3BA

Caution Connect the IC (Internally Connected) pin to Vss directly.

ANIO-ANI11 : Analog Input P00-P07 : Port0 AVDD1, AVDD2 : Analog Power Supply P40-P47 : Port4 AVss1, AVss2 : Analog Ground P50-P57 : Port5 Analog Reference Voltage AVREF : Port6 P60-P67 **BUSY** : Serial Busy P70-P77 : Port7 BUZ : Buzzer Output P80, P82-P87 : Port8 **CFGAMPO** Capstan FG Amplifier Output P90-P96 : Port9

CFGCPIN : Capstan FG Capacitor Input PTO00-PTO02, : Programmable Timer Output

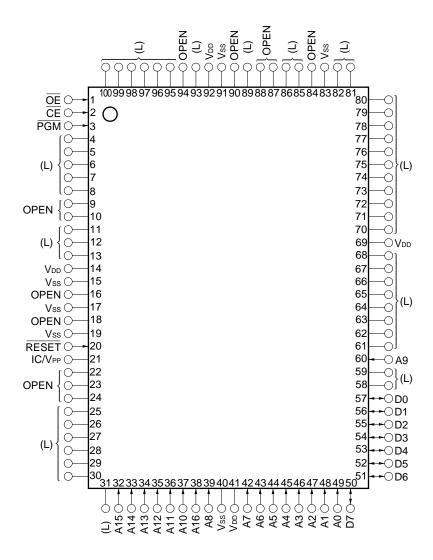
CFGIN : Analog Unit Input PTO10, PTO11

CLO : Clock Output PWM0 - PWM5 : Pulse Width Modulation Output CSYNCIN : Analog Unit Input RECCTL+, RECCTL- : RECCTL Output/PBCLT Input

CTLDLY : Control Delay Input REEL0IN, REEL1IN : Analog Unit Input

CTLIN : CTL Amplifier Input Capacitor RESET : Reset

CTLOUT1, CTLOUT2: CTL Amplifier Output ROTC: Chrominance Rotate Output


DFGIN : Analog Unit Input SCK1, SCK2 : Serial Clock **DPGIN** : Analog Unit Input SI1, SI2 : Serial Input : Envelope Input SO1, SO2 : Serial Output ENV **HASW** : Head Amplifier Switch Output STRB : Serial Strobe **HWIN** : Hardware Timer External Input : Power Supply Vdd

IC : Internally Connected VREFC : Reference Amplifier Capacitor

KEY0-KEY4 : Key Return X1, X2 : Crystal (Main System Clock)
NMI : Nonmaskable Interrupt XT1, XT2 : Crystal (Subsystem Clock)

(2) PROM Programming Mode

• 100-pin plastic QFP (14 \times 20 mm) μ PD78P4916GF-3BA

Cautions (L) : Connect to Vss via pull-down resistors individually.

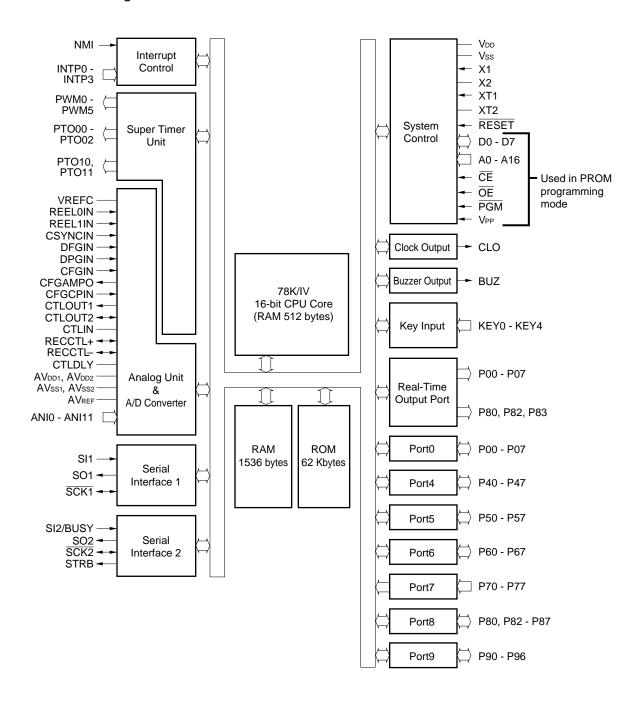
Vss : Connect to ground.

OPEN: Leave this pin unconnected.

RESET: Apply low level.

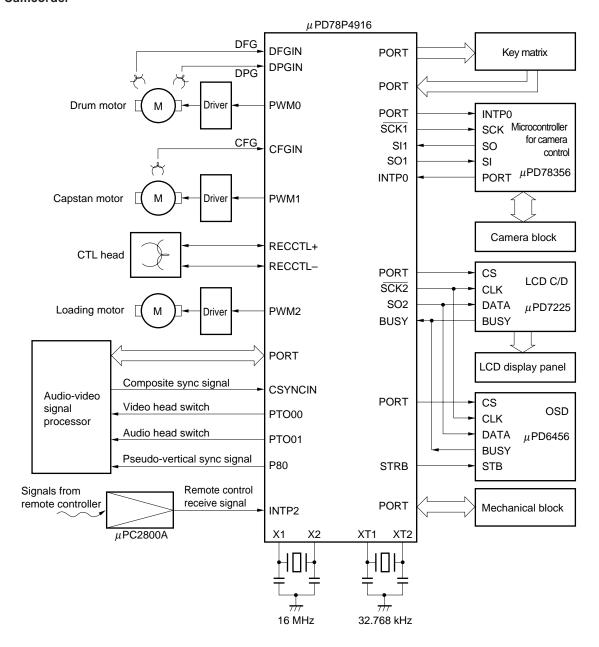
A0 - A16 : Address Bus RESET : Reset

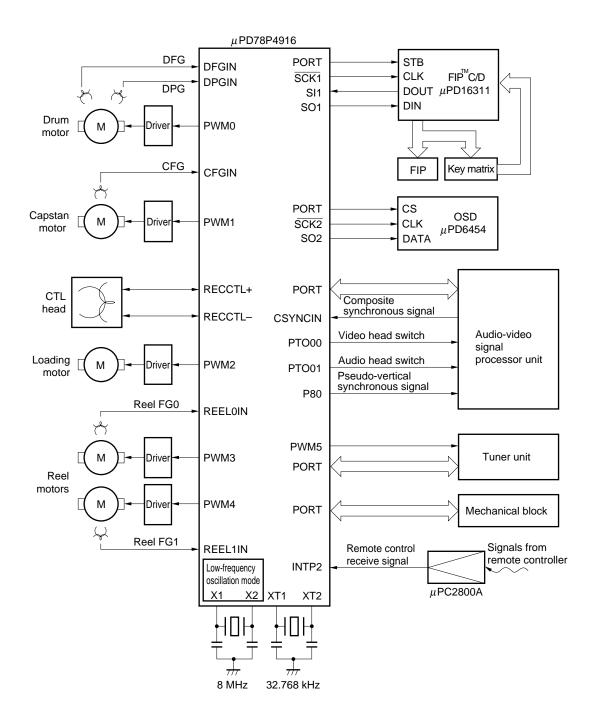
D0 - D7 : Data Bus VDD : Power Supply


CE : Chip Enable VPP : Programming Power Supply

OE : Output Enable Vss : Ground

PGM : Program


Internal Block Diagram


System Configuration Example

Camcorder

Deck-type VCR

CONTENTS

1.	DIFFERENCES BETWEEN μ PD78P4916 AND μ PD784915, μ PD784916A	12	
	PIN FUNCTION	13 15	*
3.	INTERNAL MEMORY CAPACITY SELECT REGISTER (IMS)	20	
	PROM PROGRAMMING	21 23 27	
5.	ELECTRICAL SPECIFICATIONS	28	*
6.	PACKAGE DRAWING	46	
7.	RECOMMENDED SOLDERING CONDITIONS	47	*
ΑP	PENDIX A. DEVELOPMENT TOOLS	48	
AP	PENDIX B. SOCKET DRAWING AND RECOMMENDED FOOTPRINT	50	*
ΑP	PPENDIX C. RELATED DOCUMENTS	52	

\star 1. DIFFERENCES BETWEEN μ PD78P4916 AND μ PD784915, μ PD784916A

Other than the memory types, their capacities, and memory-related points, the functions of the three devices are identical: the μ PD78P4916 incorporates a one-time PROM that is rewritable by users, while the μ PD784915 and 784916A contain mask ROMs.

Table 1-1 shows the differences among these devices. Be sure to keep in mind these differences especially when debugging and pre-producing the application system with the PROM version and then mass-producing it with the mask-ROM version.

For the details about the CPU functions and on-chip hardware, refer to the μ PD784915 Subseries User's Manual—Hardware (U10444E).

Table 1-1. Differences among μ PD784915 Subseries Devices

Parameters	μPD78P4916	μPD784915	μPD784916A			
Internal ROM	One-time PROM	Mask ROM	Mask ROM			
	62 Kbytes ^{Note}	48 Kbytes	62 Kbytes			
Internal RAM	2048 bytes ^{Note}	1280 bytes	1280 bytes			
Internal memory size select register (IMS)	Provided	Not provided	Not provided			
Pinouts	Pins related to PROM writing and reading are provided on the μ PD78P4916.					
Other	There are differences in noise immunity, noise radiation, and some electrical specifications, because of the differences in circuit complexity and mask layout.					

Note The internal PROM and RAM capacities of the μ PD78P4916 can be changed through its internal memory size select register (IMS).

Caution There are differences in noise immunity and noise radiation between the PROM and mask-ROM versions. When pre-producing the application set with the PROM version and then mass-producing it with the mask-ROM version, be sure to conduct sufficient evaluations for the set using consumer samples (not engineering samples) of the mask-ROM version.

2. PIN FUNCTION

2.1 Normal Operation Mode

(1) Port Pins

Pin Name	Input/Output	Alternate function	Description				
P00 - P07	I/O	Real-time output port	 8-bit input/output port (Port0) Specifiable to input or output mode bitwise. With software-specifiable on-chip pull-up resistors (P00 - P07). 				
P40 - P47	I/O	-	 8-bit input/output port (Port4) Specifiable to input or output mode bitwise. With software-specifiable on-chip pull-up resistors (P40 - P47). 				
P50 - P57	I/O	-	8-bit input/output port (Port • Specifiable to input or ou • With software-specifiable (P50 - P57).	tput mode bitwise.			
P60	I/O	STRB/CLO	8-bit input/output port (Port	6)			
P61		SCK1/BUZ	Specifiable to input or ou	•			
P62		SO1	With software-specifiable on-chip pull-up resistors (P60 - P67).				
P63		SI1					
P64		_					
P65]	HWIN					
P66		PWM4					
P67		PWM5					
P70 - P77	Input	ANIO - ANI7	8-bit input port (Port7)				
P80	I/O	Real-time	for Pseudo-Vsync output	7-bit input/output port (Port8)			
P82		output port	for HASW output	Specifiable to input or output			
P83]		for ROTC output	mode bitwise.			
P84		PWM2		 With software-specifiable on-chip pull-up resistors (P80, P82 - P87) 			
P85		PWM3		pull-up resistors (1 00, 1 02 - 1 07)			
P86		PTO10					
P87]	PTO11					
P90	I/O	ENV	7-bit input/output port (Port	9)			
P91 - P95]	KEY0 - KEY4	Specifiable to input or ou	tput mode bitwise.			
P96		-	With software-specifiable on-chip pull-up resistors (P90 - P96).				

(2) Non-Port Pins (1/2)

Pin Name	Input/Output	Alternate function	Description
REELOIN	Input	INTP3	Reel FG inputs
REEL1IN		_	
DFGIN		_	Drum FG, PFG input (Three-value)
DPGIN		_	Drum PG input
CFGIN		_	Capstan FG input
CSYNCIN		_	Composite SYNC input
CFGCPIN		_	CFG comparator input
CFGAMPO	Output	_	CFG amplifier output
PTO00	Output	_	Programmable timer outputs of super timer unit
PTO01		_	
PTO02		_	
PTO10		P86	
PTO11		P87	
PWM0	Output	_	PWM outputs of super timer unit
PWM1	•	_	
PWM2		P84	
PWM3		P85	
PWM4		P66	
PWM5		P67	
HASW	Output	P82	Head amplifier switch output
ROTC	Output	P83	Chrominance rotate output
ENV	Input	P90	Envelope input
SI1	Input	P63	Serial data input (Serial interface channel 1)
SO1	Output	P62	Serial data output (Serial interface channel 1)
SCK1	I/O	P61/BUZ	Serial clock input/output (Serial interface channel 1)
SI2	Input	BUSY	Serial data input (Serial interface channel 2)
SO2	Output	_	Serial data output (Serial interface channel 2)
SCK2	I/O	_	Serial clock input/output (Serial interface channel 2)
BUSY	Input	SI2	Serial busy input (Serial interface channel 2)
STRB	Output	P60/CLO	Serial strobe output (Serial interface channel 2)
ANIO - ANI7	Analog inputs	P70 - P77	Analog inputs for A/D converter
ANI8 - ANI11		_	
CTLIN	_	_	CTL amplifier input capacitor
CTLOUT1	Output	_	CTL amplifier output
CTLOUT2	I/O	_	Logic input/CTL amplifier output
RECCTL+, RECCTL-	I/O	_	RECCTL output/PBCTL input
CTLDLY	_	_	External time-constant connection (to rewrite RECCTL)
VREFC	_	_	AC ground for VREF amplifier
NMI	Input	_	Non-maskable interrupt request input

(2) Non-Port Pins (2/2)

Pin Name	Input/Output	Alternate function	Description
INTP0 - INTP2	Input	_	External interrupt request input
INTP3	Input	REEL0IN	
KEY0 - KEY4	Input	P91 - P95	Key input signal
CLO	Output	P60/STRB	Clock output
BUZ	Output	P61/SCK1	Buzzer output
HWIN	Input	P65	Hardware timer external input
RESET	Input	_	Reset input
X1	Input	_	Crystal resonator connection for main system clock oscillation
X2	_		
XT1	Input	_	Crystal resonator connection for subsystem clock oscillation
XT2	_		Crystal resonator connection for clock oscillation of watch
AVDD1, AVDD2	_	_	Positive power supply for analog unit
AVss1, AVss2	_	_	GND for analog unit
AVREF	_	_	Reference voltage input to A/D converter
V _{DD}	_	_	Positive power supply to digital unit
Vss	_	_	GND of digital unit
IC	_		Internally connected. Connect directly to Vss.

2.2 PROM Programming Mode ($V_{PP} \ge 5 \text{ V}, \overline{\text{RESET}} = L$)

Pin name	Input/output	Function
Vpp	_	Set PROM programming mode High voltage applied at program write/verify operation
RESET	Input	Low level input for setting PROM programming mode
A0 - A16		Address input
D0 - D7	I/O	Data input/output
PGM	Input	Program inhibit input in PROM programming mode
CE		PROM enable input / programming pulse input
ŌĒ		Read strobe input to PROM
VDD	_	Positive power supply
Vss		GND potential

* 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-1 shows the input/output circuit types of the device's pins and the recommended connection of the pins which are unnecessary to the user's application. The circuit diagrams for the I/O circuits are shown in Figure 2-1.

Table 2-1. Pin I/O Circuits and Recommended Connection of Unused Pins (1/2)

Pins	I/O circuit types	Direction	Recommended connection of unused pins		
P00-P07	5-A	I/O	Input mode: Connect to VDD.		
P40-P47	-		Output mode: Leave unconnected.		
P50-P57	-				
P60/STRB/CLO	-				
P61/SCK1/BUZ	8-A				
P62/SO1	5-A				
P63/SI1	8-A				
P64	5-A				
P65/HWIN	8-A				
P66/PWM4	5-A				
P67/PWM5					
P70/ANI0-P77/ANI7	9	Input	Connect to Vss.		
P80	5-A	I/O	Input mode: Connect to Vdd.		
P82/HASW			Output mode: Leave unconnected.		
P83/ROTC					
P84/PWM2					
P85/PWM3					
P86/PTO10	-				
P87/PTO11					
P90/ENV					
P91/KEY0-P95/KEY4	8-A				
P96	5-A				
SI2/BUSY	2-A	Input	Connect to VDD.		
SO2	4	Output	High-impedance mode: Connect to Vss via a pull-down resistor.		
			Otherwise: Leave unconnected.		
SCK2	8-A	I/O	Input mode: Connect to VDD.		
			Output mode: Leave unconnected.		
ANI8-ANI11	7	Input	Connect to Vss.		
RECCTL+, RECCTL-	_	I/O	When ENCTL = 0 and ENREC = 0: Connect to Vss.		

Remark ENCTL: Bit 1 of the amplifier control register (AMPC)

ENREC: Bit 7 of the amplifier mode register 0 (AMPM0)

Table 2-1. Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pins	I/O circuit types	Direction	Recommended connection of unused pins	
DFGIN	_	Input	ENDRUM = 0: Connect to Vss.	
DPGIN			ENDRUM = 0, or ENDRUM = 1 and SELPGSEPA = 0:	
			Connect to Vss.	
CFGIN, CFGCPIN			ENCAP = 0: Connect to Vss.	
CSYNCIN			ENCSYN = 0: Connect to Vss.	
REEL0IN/INTP3, REEL1IN			ENREEL = 0: Connect to Vss.	
CTLOUT1	_	Output	Leave unconnected.	
CTLOUT2	_	I/O	When ENCTL and ENCOMP = 0 and 0: Connect to Vss.	
			ENCTL = 1: Leave unconnected.	
CFGAMPO	_	Output	Leave unconnected.	
CTLIN	_	_	When ENCTL = 0: Leave unconnected.	
VREFC			When ENCTL, ENCAP, and ENCOMP = 0, 0, and 0:	
			Leave unconnected.	
CTLDLY			Leave unconnected.	
PWM0, PWM1	3	Output	Leave unconnected.	
PTO00-PTO02				
NMI	2	Input	Connect to VDD.	
INTP0			Connect to VDD or Vss.	
INTP1, INTP2	2-A	Input	Connect to VDD.	
AVDD1, AVDD2	_	_	Connect to V _{DD} .	
AVREF, AVSS1, AVSS2			Connect to Vss.	
RESET	2		_	
XT1	_	_	Connect to Vss.	
XT2			Leave unconnected.	
IC			Connect directly to Vss.	

Remark ENDRUM: Bit 2 of the amplifier control register (AMPC)

SELPGSEPA: Bit 2 of the amplifier mode register 0 (AMPM0)
ENCAP: Bit 3 of the amplifier control register (AMPC)
ENCSYN: Bit 5 of the amplifier control register (AMPC)
ENREEL: Bit 6 of the amplifier control register (AMPC)
ENCTL: Bit 1 of the amplifier control register (AMPC)
ENCOMP: Bit 4 of the amplifier control register (AMPC)

Figure 2-1. Pin I/O Circuit Diagrams (1/2)

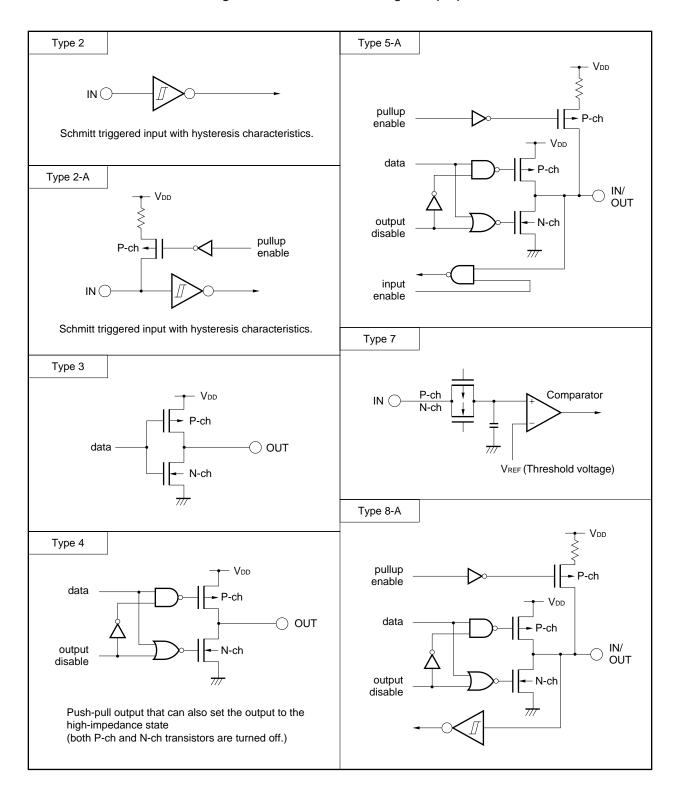
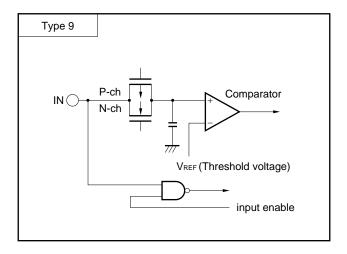
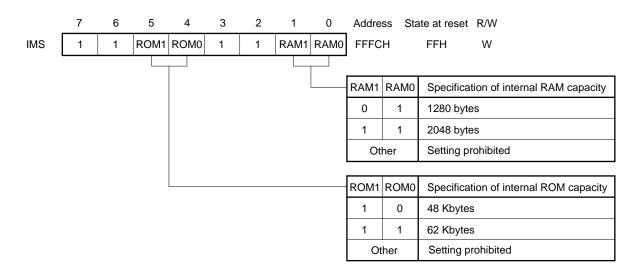



Figure 2-1. Pin I/O Circuit Diagrams (2/2)


3. INTERNAL MEMORY CAPACITY SELECT REGISTER (IMS)

Internal memory capacity select register (IMS) specifies the effective area of on-chip memory (PROM, RAM) of the μ PD78P4916. Setting this register is required when the capacity of the ROM or RAM in the mask version is smaller than that of the μ PD78P4916. If the memory capacity of the μ PD78P4916 is appropriately defined using this register, bugs in application programs due to accessing an address beyond the memory capacity of the actual chip can be avoided.

The IMS register is write-only register. To write this register, use the 8-bit manipulation instruction.

The register is initialized to FFH by RESET input (ROM: 62 Kbytes, RAM: 2048 bytes).

★ Figure 3-1. Internal Memory Capacity Select Register (IMS) Format

Caution The μ PD78P4916 has the IMS and the μ PD784915 and 784916A do not have it. However, if a write instruction to IMS is executed in the μ PD784915 or 784916A, it does not cause conflicts or malfunctions.

4. PROM PROGRAMMING

The μ PD78P4916 has on-chip 62-Kbyte PROM as the program memory. The PROM programming mode is entered by setting V_{DD}, IC/V_{PP}, and $\overline{\text{RESET}}$ pins as specified. For the settings of the unused pins in this mode, refer to the drawing of "(2) PROM Programming Mode" in the section "Pin Configuration (Top View)".

4.1 Operation Mode

The PROM programming mode is entered by applying +5 V or +12 V to the IC/V_{PP} pin, +5 V or +6.5 V to the V_{DD} pins, and low-level voltage to the $\overline{\text{RESET}}$ pin. Table 4-1 shows the operation mode specified by the $\overline{\text{CE}}$, $\overline{\text{OE}}$, and $\overline{\text{PGM}}$ pins.

It is possible to read the contents of PROM by setting up read operation mode.

Table 4-1. Operation Mode of PROM Programming

Pins Operation mode	RESET	IC/V _{PP}	V _{DD}	CE	ŌĒ	PGM	D0 - D7
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High impedance
Byte write				L	Н	L	Data input
Program verify			·	L	L	Н	Data output
Program inhibit				×	Н	Н	High impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable				L	Н	×	High impedance
Standby				Н	×	×	High impedance

 $\textbf{Remark} \ \times \colon \ \mathsf{Low} \ \mathsf{or} \ \mathsf{high} \ \mathsf{level}$

(1) Read mode

By setting $\overline{CE} = L$ and $\overline{OE} = L$, the device enters the read mode.

(2) Output disable mode

By setting $\overline{OE} = H$, the device enters the output disable mode, where data output pins go to high impedance state.

Therefore it is possible to read data from a specified device by enabling only the \overline{OE} pin of the device to be read, if two or more μ PD78P4916s are connected to a data bus.

(3) Standby mode

By setting CE = H, the device enters the Standby mode.

In this mode, data output pins go to high impedance state regardless of the $\overline{\text{OE}}$ pin condition.

(4) Page data latch mode

By setting $\overline{CE} = H$, $\overline{PGM} = H$, and $\overline{OE} = L$ at the beginning of page programming mode, the device enters the page data latch mode.

In this mode, 4-byte data are latched in page units (consisting of 4 bytes) to internal address/data latch circuit.

(5) Page programming mode

After one-page data (consisting of 4 bytes) and their address are latched in the page data latch mode, the page programming operation is executed by applying 0.1-ms programming pulse (active low) to the \overline{PGM} pin under $\overline{CE} = H$, $\overline{OE} = H$ conditions. Following that operation, the programming data is verified by setting $\overline{CE} = L$ and $\overline{OE} = L$.

When data is not programmed by one programming pulse, the write and verify operations are repeated X times $(X \le 10)$.

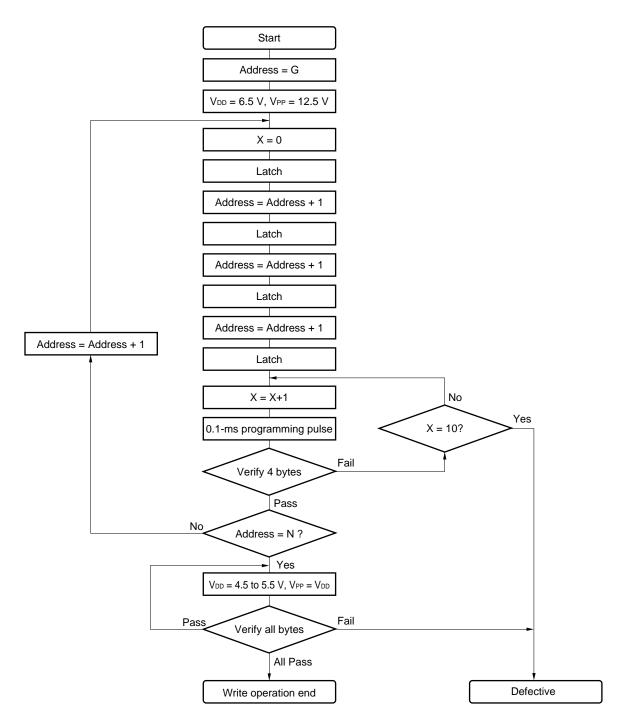
(6) Byte programming mode

Applying 0.1-ms programming pulse (active low) to the \overline{PGM} pin under $\overline{CE} = L$ and $\overline{OE} = H$ condition, byte programming operation is executed. Next, the programming data is verified by setting $\overline{OE} = L$.

When data is not programmed by one programming pulse, the write and verify operations are repeated X times $(X \le 10)$.

(7) Program verify mode

By setting $\overline{CE} = L$, $\overline{PGM} = H$, and $\overline{OE} = L$, the device enters the program verify mode. Check whether data is programmed correctly or not in this mode after write operation.

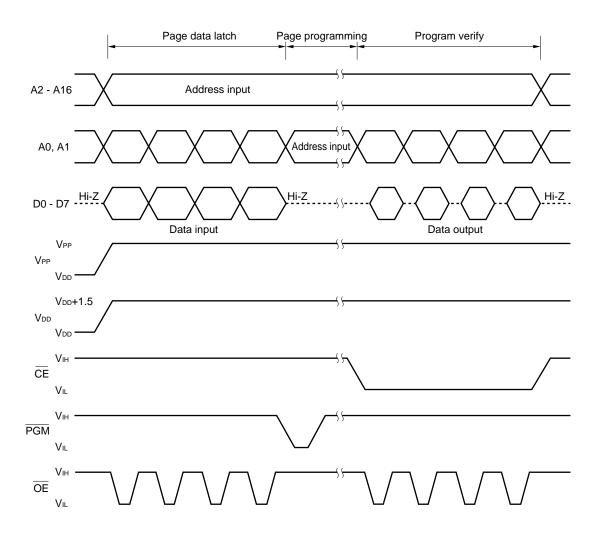

(8) Program inhibit mode

When the $\overline{\text{OE}}$ pins, VPP pins, and D0-D7 pins of two or more μ PD78P4916s are connected in parallel, use program inhibit mode to write data to one of those devices.

Programming is executed in the page programming mode or byte programming mode as mentioned above. At that time, data is not programmed to a device for which high level voltage is applied to the $\overline{\text{PGM}}$ pin.

4.2 PROM Write Procedure

Figure 4-1. Flowchart in Page Programming Mode



Remarks 1. G = Start address

2. N = End address of the program

Figure 4-2. Operation Timing in Page Programming Mode

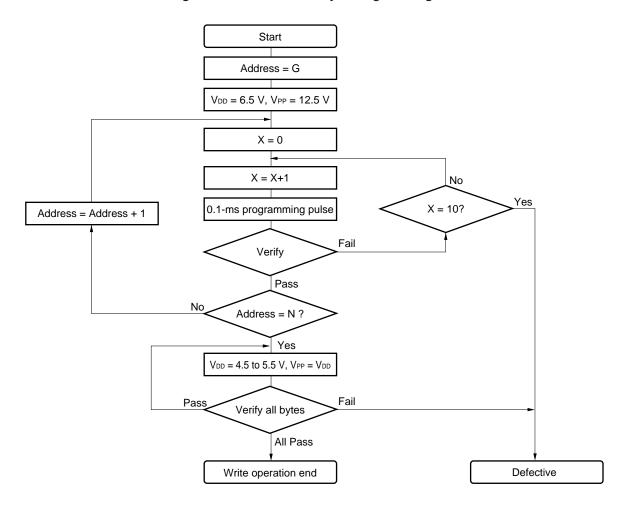


Figure 4-3. Flowchart in Byte Programming Mode

Remarks 1. G = Start address

2. N = End address of the program

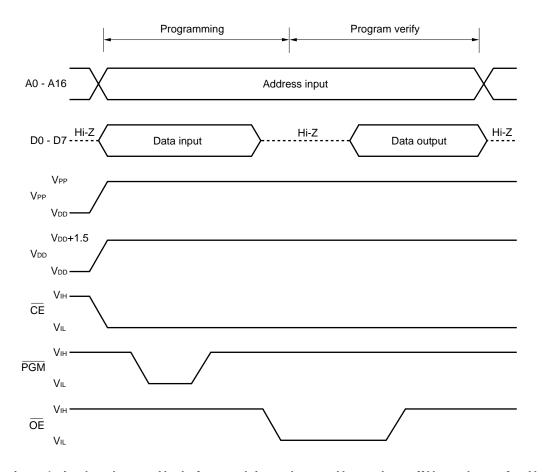


Figure 4-4. Operation Timing in Byte Programming Mode

- Cautions 1. Apply voltage to VDD before applying voltage to VPP, and cut off VDD voltage after VPP voltage is cut off.
 - 2. The voltage including overshoot applied to VPP pin must be kept less than +13.5 V.
 - 3. If a device is inserted or removed while +12.5 V is applied to VPP pin, it may be adversely affected in reliability.

4.3 PROM Read Procedure

The contents of PROM can be read onto external data bus (D0-D7) as described below:

- (1) Fix RESET pin to low and supply +5 V to VPP pin. Connect other unused pins as specified in "(2) PROM Programming Mode" in section "Pin Configuration (Top View)."
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0-A16 pins.
- (4) Enter the read mode ($\overline{CE} = L$, $\overline{OE} = L$).
- (5) Output data to D0-D7 pins.

The above operation timing from (2) to (5) is shown in Figure 4-5.

Figure 4-5. PROM Read Timing

4.4 Screening One-time PROM Versions

The one-time PROM version (μ PD78P4916GF-3BA) cannot be completely tested by NEC for shipment because of its structure. For screening, it is recommended to verify PROM after storing the necessary data under the following conditions:

Storage Temperature	Storage Time
125 °C	24 hours

* 5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25$ °C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage VDD VDD		V _{DD} − AV _{DD1} ≤ 0.5 V	-0.5 to +7.0	V
	AV _{DD1}	V _{DD} − AV _{DD2} ≤ 0.5 V	-0.5 to +7.0	V
	AV _{DD2}	AV _{DD1} − AV _{DD2} ≤ 0.5 V	-0.5 to +7.0	V
	AVss1		-0.5 to +0.5	V
	AVss2		-0.5 to +0.5	V
Input voltage	Vı		-0.5 to Vpp+0.5	V
Analog input voltage	VIAN	V _{DD} ≥ AV _{DD2}	-0.5 to AV _{DD2} +0.5	V
(ANI0-ANI11)		V _{DD} < AV _{DD2}	-0.5 to V _{DD} +0.5	V
Output voltage	Vo		-0.5 to Vpp+0.5	V
Output current, low	Іоь	Per pin	15	mA
		Total of all output pins	100	mA
Output current, high	Іон	Per pin	-10	mA
		Total of all output pins	-50	mA
Operating ambient temperature	ТА		-10 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Caution If any of the above parameters exceeds the absolute maximum ratings, even momentarily, device reliability may be impaired. The absolute maximum ratings are values that may physically damage the product. Be sure to use the product within the ratings.

Operating Conditions

Clock frequency	Operating ambient temperature (T _A)	Operating condition	Supply voltage (V _{DD})
4 MHz ≤ fxx ≤ 16 MHz	−10 to +70 °C	All functions	+4.5 to +5.5 V
		CPU function only	+4.0 to +5.5 V
32 kHz ≤ fxτ ≤ 35 kHz		Subclock operation (CPU, watch, and Port functions only)	+2.7 to +5.5 V

Oscillator Characteristics (Main Clock) (TA = -10 to +70 °C, VDD = AVDD = 4.0 to 5.5 V, Vss = AVss = 0 V)

Resonator	Recommended circuit	Item	MIN.	MAX.	Unit
Crystal resonator	X1 X2 Vss C1 C2	Oscillation frequency (fxx)	4	16	MHz

Oscillator Characteristics (Subclock) (TA = -10 to +70 °C, VDD = AVDD = 2.7 to 5.5 V, Vss = AVss = 0 V)

Resonator	Recommended circuit	Item	MIN.	MAX.	Unit
Crystal resonator	XT1 XT2 Vss C1 C2	Oscillation frequency (fxτ)	32	35	kHz

Caution When using the main system clock and subsystem clock oscillators, wiring in the area enclosed with the dotted lines should be carried out as follows to avoid an adverse effect from wiring capacitance:

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
 Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss. Do not ground wiring to a ground pattern in which high current flows.
- Do not fetch a signal from the oscillator.

As the amplification degree of the subsystem clock oscillator is low to reduce current consumption, pay particular attention to the wiring method.

DC Characteristics (TA = -10 to +70 °C, VDD = AVDD = 4.5 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	V _{IL1}	Other than pins ir	ndicated in Note 1 below	0		0.3V _{DD}	V
	V _{IL2}	Pins indicated in	Note 1 below	0		0.2V _{DD}	V
	VIL3	X1, X2		0		0.4	V
Input voltage, high	V _{IH1}	Other than pins ir	ndicated in Note 1 below	0.7V _{DD}		V _{DD}	V
	V _{IH2}	Pins indicated in	Note 1 below	0.8Vpd		V _{DD}	V
	VIH3	X1, X2		V _{DD} -0.5		V _{DD}	V
Output voltage, low	V _{OL1}	IoL = 5.0 mA (Pins	s listed in Note 2 below)			0.6	V
	V _{OL2}	IoL = 2.0 mA				0.45	V
	Vol3	Ιοι = 100 μΑ				0.25	V
Output voltage,	V _{OH1}	Iон = −1.0 mA		V _{DD} -1.0			V
high	V _{OH2}	Іон = -100 μА		V _{DD} -0.4			V
Input leakage current	Iц	$0 \le V_I \le V_{DD}$				±10	μΑ
Output leakage current	Ісо	0 ≤ Vo ≤ Vdd				±10	μΑ
VDD power supply current	IDD1	Operation mode	fxx = 16 MHz fxx = 8 MHz (Low frequency oscillation mode) Internal main clock operation at 8 MHz		35	55	mA
			fxr = 32.768 kHz Subclock operation (CPU, Watch, Port) VDD = 2.7 V		0.9	1.2	mA
	IDD2	HALT mode	fxx = 16 MHz fxx = 8 MHz (Low frequency oscillation mode) Internal main clock operation at 8 MHz		15	27.5	mA
			fxT = 32.768 kHz Subclock operation (CPU, Watch, Port) VDD = 2.7 V		30	60	μΑ
Data retention voltage	VDDDR	STOP mode		2.5			V
Data retention current Note 3	Idddr	STOP mode VDDDR = 5.0 V	Subclock oscillation		36	75	μΑ
		STOP mode VDDDR = 2.7 V	Subclock oscillation		3.5	15	μΑ
		STOP mode VDDDR = 2.5 V	Subclock suspended		1.5	10	μΑ
Pull-up resistor	R∟	Vı = 0 V	1	25	55	110	kΩ

Notes 1. RESET, IC, NMI, INTPO-INTP2, P61/SCK1/BUZ, P63/SI1, SCK2, SI2/BUSY, P65/HWIN, P91/KEY0-P95/KEY4.

- **2.** P46, P47
- **3.** When subclock is suspended at STOP mode, disconnect feedback resistor and connect XT1 pin to the V_{DD} potential.

AC Characteristics

CPU and peripheral unit operation clocks (TA = -10 to +70 °C, VDD = AVDD = 4.5 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	TYP.	Unit
CPU operation clock cycle time	tclk	fxx = 16 MHz V _{DD} = AV _{DD} = 4.0 to 5.5 V CPU function only		ns
		fxx = 16 MHz		
		fxx = 8 MHz, Low frequency oscillation mode (CC bit7 = 1)		
Peripheral unit operation clock	tclk1	fxx = 16 MHz	125	ns
cycle time		fxx = 8 MHz, Low frequency oscillation mode (CC bit7 = 1)		

Serial interface

(1) SIOn: n = 1, 2 (TA = -10 to +70 °C, VDD = AVDD = 4.5 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Serial clock cycle time	tcysk	Input	External clock	1.0		μs
		Output	fclk1/8	1.0		μs
			fclk1/16	2.0		μs
			fclk1/32	4.0		μs
			fclk1/64	8.0		μs
			fclk1/128	16		μs
			fclk1/256	32		μs
Serial clock high/low level width	twsкн	Input	External clock	420		ns
	twsĸL	Output	Internal clock	tсүзк/2-50		ns
SIn set-up time (to SCKn ↑)	tsssк			100		ns
SIn hold time (from SCKn ↑)	tнssк			400		ns
SOn output delay time (from $\overline{\text{SCKn}} \downarrow$)	tossk			0	300	ns

Remarks 1. fclk1: Operation clock for peripheral unit (8 MHz)

2. n = 1, 2

(2) Only SIO2 (TA= -10 to +70 °C, VDD = AVDD = 4.5 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
$\overline{SCK2}(8) \uparrow \to STRB \uparrow$	t dstrb		twskh	tcysk	
Strobe high level width	twstrb		tсүзк-30	tcysk+30	ns
BUSY setup time (to BUSY detection timing)	tsbusy		100		ns
BUSY hold time (from BUSY detection timing)	thbusy		100		ns
Busy inactive \rightarrow SCK2(1) \downarrow	tlbusy			tcysk+twskh	

Remarks 1. The value in the parentheses following $\overline{SCK2}$ indicates the sequential number of the $\overline{SCK2}$.

- **2.** BUSY detection timing is $(n + 2) \times \text{tcysk}$ (n = 0, 1,...) after $\overline{\text{SCK2}}(8) \uparrow$.
- **3.** BUSY inactive \rightarrow $\overline{SCK2}(1)$ \downarrow is a value at the time data is already written in SIO2.

Other Operations (TA = -10 to +70 °C, VDD = AVDD = 4.5 to 5.5 V, Vss = AVss = 0 V)

P	arameter	Symbol	Cond	itions	MIN.	MAX.	Unit
Timer unit inpo	ut low level width	twcTL	at DFGIN, CFGIN, D REEL1IN logic level		tclk1		ns
Timer unit inpo	ut high level width	twcтн	at DFGIN, CFGIN, D REEL1IN logic level		tclk1		ns
Timer unit inpu	ut signal valid edge	tperin	DFGIN, CFGIN and	DPGIN input	2		μs
CSYNCIN low	level width	twcR1L	Digital noise elimina	tor not used	8tclk1		ns
			Digital noise elimina (INTM2 bit 4 = 0)	tor used	108tclk1		ns
			Digital noise elimina (INTM2 bit 4 = 1)	tor used	180tclk1		ns
CSYNCIN high	n level width	twcr1H	Digital noise elimina	tor not used	8tclk1		ns
			Digital noise elimina (INTM2 bit 4 = 0)	tor used	108tclк1		ns
			Digital noise elimina (INTM2 bit 4 = 1)	tor used	180tclk1		ns
Digital noise	Eliminated pulse	twsep	INTM2 bit 4 = 0			104tclк1	ns
eliminator	width		INTM2 bit 4 = 1			176tclк1	ns
Passed pulse width		INTM2 bit 4 = 0		108tclк1		ns	
			INTM2 bit 4 = 1		180tclк1		ns
NMI low level	width	twnil	V _{DD} = AV _{DD} = 2.7 to 5.5 V		10		μs
NMI high level	width	twnih	$V_{DD} = AV_{DD} = 2.7 \text{ to } 5.5 \text{ V}$		10		μs
INTP0 and INT	P3 low level width	twiplo			2tclk1		ns
INTP0 and INT	P3 high level width	twipho twipho			2tclk1		ns
INTP1, KEY0	- KEY4 low level	twiPL1	Other than in STOP mode When cancelling STOP mode		2tclk1		ns
width					10		μs
INTP1, KEY0	- KEY4 high level	twiph1	Other than in STOP mode		2tclk1		ns
width			When cancelling ST	OP mode	10		μs
INTP2 low lev	el width	twipl2	Main clock operation	Sampled at fclk	2tclk1		ns
			in normal mode	Sampled at fclk/128	32 Note		μs
			Subclock operation	Sampled at fclk	61		μs
			in normal mode	Sampled at fclk/128	7.9 Note		ms
			When cancelling ST	OP mode	10		μs
INTP2 high level width		twiph2	Main clock operation	Sampled at fclk	2tclk1		ns
			in normal mode	Sampled at fclk/128	32 Note		μs
			Subclock operation	Sampled at fclk	61		μs
			in normal mode	Sampled at fclk/128	7.9 Note		ms
			When cancelling STOP mode		10		μs
RESET low le	vel width	twrsl			10		μs

Note If a high level or low level is input two times in succession during the sampling period, high level or low level is detected.

Remark tolk1: Operation clock cycle time for peripheral unit (125 ns).

Clock Output Operation ($T_A = -10 \text{ to } +70 \text{ }^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Expression	MIN.	MAX.	Unit
CLO cycle time	tcycL		250	2000	ns
CLO low level width	tcll	tcycL/2 ± 50	75	1050	ns
CLO high level width	tсьн	tcycL/2 ± 50	75	1050	ns
CLO rising time	tclr			50	ns
CLO falling time	tclf			50	ns

Data Retention Characteristics (T_A = -10 to +70 °C, V_{DD} = AV_{DD} = 2.5 to 5.5 V, V_{SS} = AV_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL	Pins listed in Note below	0		0.1VDDDR	V
Input voltage, high	ViH		0.9Vdddr		VDDDR	V

Note RESET, IC, NMI, INTPO-INTP2, P61/SCK1/BUZ, P63/SI1, SCK2, SI2/BUSY, P65/HWIN, P91/KEY0-P95/KEY4

Watch Function ($T_A = -10 \text{ to } +70 ^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 2.7 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Subclock oscillation retention voltage	V _{DDXT}		2.7		V
Hardware watch function operation voltage	VDDW		2.7		V

Subclock Oscillation Suspension Detection Flag ($T_A = -10 \text{ to } +70 ^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Oscillation suspension detection width	toscf		45		μs

A/D Converter Characteristics (Ta = -10 to +70 °C, VDD = AVDD = AVREF = 4.5 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8			bit
Total error		AVREF = VDD			2.0	%
Quantization error					±1/2	LSB
Conversion time	tconv	ADM bit 4 = 0	160tcLK1			μs
		ADM bit 4 = 1	80tclk1			μs
Sampling time	tsamp	ADM bit 4 = 0	32tcLK1			μs
		ADM bit 4 = 1	16t ськ1			μs
Analog input voltage	VIAN		0		AVREF	V
Analog input impedance	Zan			1000		ΜΩ
AVREF current	Alref			0.4	1.2	mA

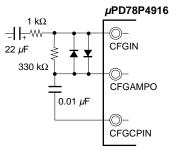
VREF Amplifier (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Reference voltage	VREF		2.35	2.50	2.65	V
Charge current	Існв	AMPM0.0 is set to 1 for pins listed in Note below.	300			μΑ

Note RECCTL+, RECCTL-, CFGIN, CFGCPIN, DFGIN, DPGIN, CSYNCIN, REEL0IN, REEL1IN

CTL Amplifier (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CTL+, - input resistance	RICTL		2	5	10	kΩ
Feedback resistance	RFCTL		20	50	100	kΩ
Bias resistance	RBCTL		20	50	100	kΩ
Minimum voltage gain	GCTLMIN		17	20	22	dB
Maximum voltage gain	GCTLMAX		71	75		dB
Gain switching step	SGAIN			1.77		dB
Common mode signal rejection	CMR	DC, Voltage gain: 20 dB		50		dB
Comparator set voltage for waveform regulation, high	VPBCTLHS		VREF+0.47	Vref+0.50	VREF+0.53	V
Comparator reset voltage for waveform regulation, high	VPBCTLHR		VREF+0.27	VREF+0.30	VREF+0.33	V
Comparator set voltage for waveform regulation, low	VPBCTLLS		VREF-0.53	VREF-0.50	VREF-0.47	V
Comparator reset voltage for waveform regulation, low	VPBCTLLR		VREF-0.33	VREF-0.30	VREF-0.27	V
Comparator high voltage for CLT flag S	VFSH		VREF+1.00	VREF+1.05	VREF+1.10	V
Comparator low voltage for CLT flag S	VFSL		VREF-1.10	V _{REF} -1.05	Vref-1.00	V
Comparator high voltage for CLT flag L	VFLH		VREF+1.40	VREF+1.45	Vref+1.50	V
Comparator low voltage for CLT flag L	VFLL		VREF-1.50	VREF-1.45	VREF-1.40	V



CFG Amplifier (AC Coupling) (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage gain 1	G _{CFG1}	fi = 2 kHz, open loop	50			dB
Voltage gain 2	G _{CFG2}	f _i = 2 kHz, open loop	34			dB
CFGAMPO output current, high	Іонсга	DC	-1			mA
CFGAMPO output current, low	lolcfg	DC	0.4			mA
Comparator high voltage	VcFGH		VREF+0.09	VREF+0.12	Vref+0.15	٧
Comparator low voltage	Vcfgl		VREF-0.15	Vref-0.12	Vref-0.09	V
Duty precision	Роиту	See Note below.	49.7	50.0	50.3	%

Note The following circuit and input signal conditions are assumed.

- Input signal: sine wave input (5 m V_{p-p}), $f_i = 1 \text{ kHz}$
- Voltage gain: 50 dB

DFG Amplifier (AC Coupling) (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage gain	GDFG	f _i = 900 Hz, open loop	50			dB
Feedback resistance	Rfdfg		160	400	640	kΩ
Input protect resistance	Ridfg			150		Ω
Comparator high voltage	VDFGH		VREF+0.07	VREF+0.10	Vref+0.14	V
Comparator low voltage	VDFGL		VREF-0.14	Vref-0.10	Vref-0.07	V

Caution The resistance of the pin to be connected to the DFGIN pin must be below 16 k Ω . If the resistance is higher than the limit, the DFG amplifier may oscillate.

DPG Comparator (AC Coupling) (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input impedance	ZIDPG		20	50	100	kΩ
Comparator high voltage	VDPGH		VREF+0.02	Vref+0.05	VREF+0.08	V
Comparator low voltage	VDPGL		Vref-0.08	Vref-0.05	Vref-0.02	V

Three-value divider (TA = 25 $^{\circ}$ C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

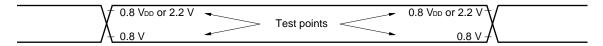
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input impedance	ZIPFG		20	50	100	kΩ
Comparator high voltage	Vpfgh		VREF+0.5	VREF+0.7	VREF+0.9	V
Comparator low voltage	Vpfgl		Vref-1.4	VREF-1.2	VREF-1.0	V

CSYNC Comparator (AC Coupling) (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

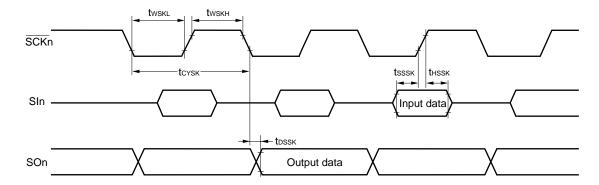
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input impedance	ZICSYN		20	50	100	kΩ
Comparator high voltage	Vcsynh		VREF+0.07	Vref+0.10	VREF+0.13	V
Comparator low voltage	Vcsynl		Vref-0.13	Vref-0.10	VREF-0.07	V

Reel FG Comparator (AC Coupling) (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input impedance	Zirlfg		20	50	100	$k\Omega$
Comparator high voltage	VRLFGH		Vref+0.02	VREF+0.05	VREF+0.08	V
Comparator low voltage	Vrlfgl		Vref-0.08	VREF-0.05	VREF-0.02	V

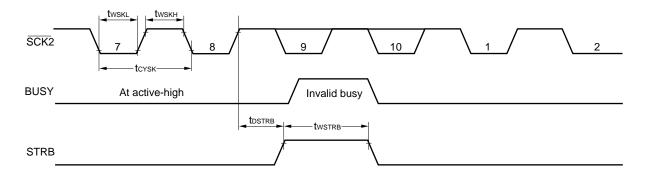

RECCTL Driver (TA = 25 °C, VDD = AVDD = 5 V, Vss = AVss = 0 V)

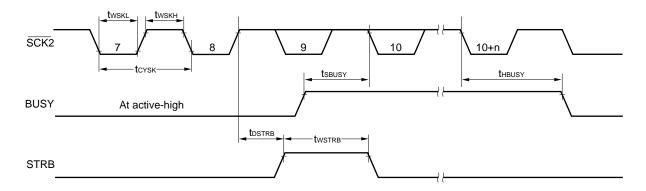
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RECCTL+, - high level output voltage	Vohrec	Iон = −4 mA	V _{DD} -0.8			V
RECCTL+, - low level output voltage	Volrec	IoL = 4 mA			0.8	V
CTLDLY on-chip resistor	RстL		40	70	140	kΩ
CTLDLY charge current	Іонсть	On-chip resistor disabled	-3			mA
CTLDLY discharge current	IOLCTL		-3			mA



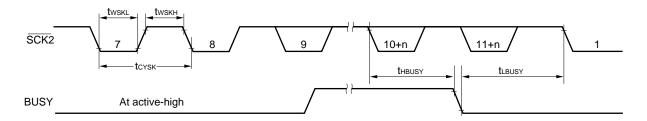
Timing Waveform

AC timing test point

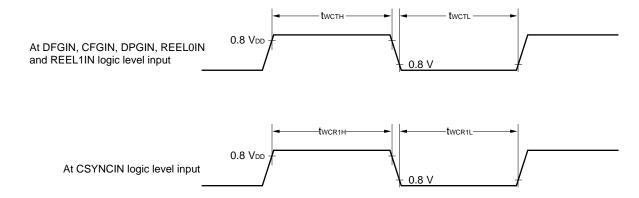

Serial Transfer Timing (SIOn: n = 1, 2)

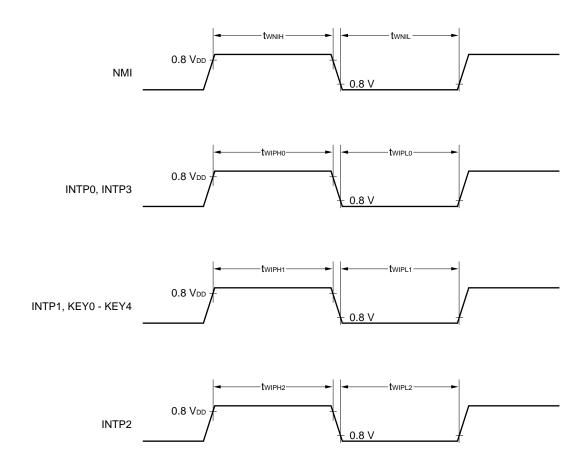


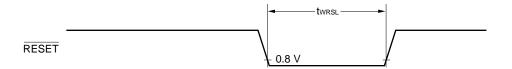
Serial Transfer Timing (Only SIO2)


No busy processing

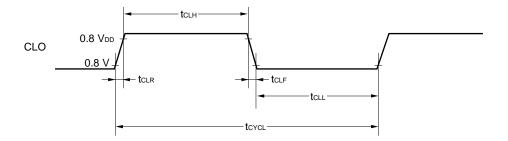
Continue busy processing


Terminate busy processing


Caution Do not use busy control and strobe control whenever the external clock is selected as a serial clock.


Super timer unit input timing

Interrupt input timing



Reset input timing

Clock output timing

DC Programming Characteristics (TA = +25 \pm 5 $^{\circ}\text{C}, \, \text{Vss}$ = AVss = 0 V)

Parameter	Symbol	Symbol Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih	ViH		2.4		VDDP+0.3	V
Input voltage, low	VIL	VIL		-0.3		0.8	V
Input leakage current	ILIP	lu	$0 \leq V_{I} \leq V_{DDP} \text{ Note 2}$			±10	μΑ
Output voltage, high	Voн1	V _{OH1}	Іон = -400 μА	2.4			V
	V _{OH2}	V _{OH2}	Iон = −100 μA	VDDP-0.7			V
Output voltage, low	Vol	Vol	IoL = 2.1 mA			0.45	V
Output leakage current	ILO		$0 \le V_0 \le V_{DDP}, \overline{OE} = V_{IH}$			±10	μΑ
V _{DD} supply voltage	VDDP	V _{DD}	Program memory write mode	6.25	6.5	6.75	V
			Program memory read mode	4.50	5.0	5.50	V
VPP supply voltage	VPP	V _{PP}	Program memory write mode	12.2	12.5	12.8	V
			Program memory read mode	VPP = VD	DDP		V
V _{DD} supply current	IDD	loo	Program memory write mode			50	mA
			Program memory read mode			30	mA
VPP supply current	I PP	Ірр	Program memory write mode			50	mA
			Program memory read mode		1	100	μΑ

Notes 1. Corresponding symbols of the μ PD27C1001A.

2. VDDP is a VDD pin during programming.

AC Programming Characteristics (TA = +25 \pm 5 $^{\circ}\text{C}, \, \text{Vss}$ = AVss = 0 V)

PROM Write Operation Mode (Page Programming Mode)

Parameter	Symbol Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time	tas		2			μs
CE set time	tces		2			μs
Input data setup time	tos		2			μs
Address hold time	tah		2			μs
	tahl		2			μs
	t ahv		0			μs
Input data hold time	tон		2			μs
Output data hold time	tor		0		230	ns
V _{PP} setup time	tvps		2			μs
V _{DDP} setup time	tvDS Note 2		2			μs
Initial programming pulse width	tpw		0.095	0.1	0.105	ms
OE set time	toes		2			μs
$\overline{\text{OE}} ightarrow \text{valid data delay time}$	toe				1	μs
OE pulse width during data latch	tLW		1			μs
PGM set-up time	tpgms		2			μs
CE hold time	tсен		2			μs
OE hold time	tоен		2			μs

Notes 1. Correspond to symbols of the μ PD27C1001A (except tvbs).

2. tvps corresponds to tvcs of the $\mu\text{PD27C1001A}.$

PROM Write Mode (Byte Programming Mode)

Parameter	Symbol Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time	tas		2			μs
CE set time	tces		2			μs
Input data setup time	tos		2			μs
Address hold time	tан		2			μs
Input data hold time	tон		2			μs
Output data hold time	tor		0		130	ns
V _{PP} setup time	tvps		2			μs
VDDP setup time	tvDS Note 2		2			μs
Initial programming pulse width	tpw		0.095	0.1	0.105	ms
OE set time	toes		2			μs
$\overline{OE} o valid$ data delay time	toe				150	ns

Notes 1. Correspond to symbols of the μ PD27C1001A (except tvps).

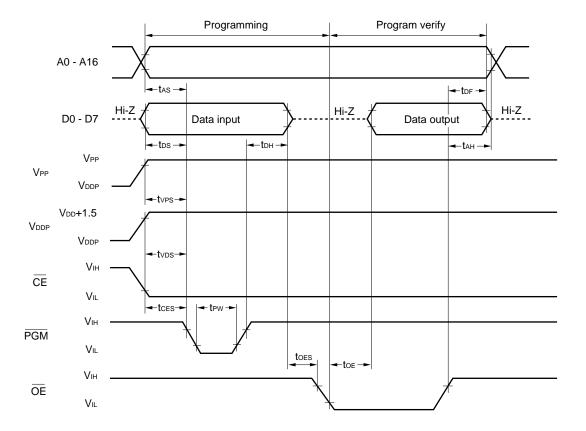
2. tvps corresponds to tvcs of the $\mu\text{PD27C1001A}.$

PROM Read Mode

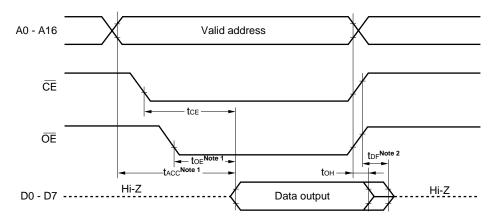
Parameter	Symbol Note 1	Conditions	MIN.	TYP.	MAX.	Unit
$Address \to data \ output \ time$	tacc	CE = OE = VIL			200	ns
$\overline{CE} \downarrow o$ data output time	tce	OE = VIL			200	ns
$\overline{OE} \downarrow \to data$ output time	toe	CE = VIL			75	ns
Data hold time (from OE ↑, CE ↑) Note 2	tof	CE = VIL or OE = VIL	0		60	ns
Data hold time (from address)	tон	$\overline{CE} = \overline{OE} = V_IL$	0			ns

Notes 1. Correspond to symbols of the μ PD27C1001A.

2. top is a time after either \overline{OE} or \overline{CE} rose to V_H first.



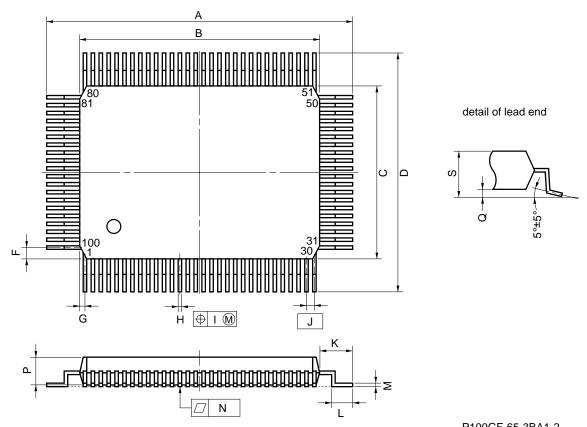
PROM Write Mode Timing (Page Programming Mode)


PROM Write Mode Timing (Byte Programming Mode)

Cautions 1. Apply voltage to VDDP before applying voltage to VPP, and cut off VDDP voltage after VPP voltage is cut off.

- 2. The voltage, including overshoot, applied to VPP pin must be kept less than +13.5 V.
- 3. If a device is inserted or removed while +12.5 V is applied to VPP pin, it may be adversely affected in reliability.

PROM Read Mode Timing


Notes 1. If data need to be read within t_{ACC} , the maximum delay time of \overline{OE} active level input from \overline{CE} falling should be $t_{ACC} - t_{OE}$.

2. t_{DF} is the time after either \overline{OE} or \overline{CE} first rose to V_{IH} .

6. PACKAGE DRAWING

100 PIN PLASTIC QFP (14 × 20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P100GF-65-3BA1-2
ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

*

7. RECOMMENDED SOLDERING CONDITIONS

This device should be soldered and mounted under the following conditions.

For details about the recommended conditions, refer to the document "Semiconductor Device Mounting Technology Manual" (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 7-1. Surface Mounting Type Soldering Conditions

 μ PD78P4916GF-3BA: 100-pin plastic QFP (14 x 20 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared rays reflow	Peak package's surface temperature: 235 °C, Reflow time: 30 seconds or less (at 210 °C or higher), Number of reflow processes: 2 or less Attention (1) Wait for the device temperature to come down to room temperature after the first reflow before starting the second reflow. (2) Do not perform flux cleaning of the soldered portion after the first reflow.	IR35-00-2
VPS	Peak package's surface temperature: 215 °C, Reflow time: 40 seconds or less (at 200 °C or higher), Number of reflow processes: 2 or less <attention> (1) Wait for the device temperature to come down to room temperature after the first reflow before starting the second reflow. (2) Do not perform flux cleaning of the soldered portion after the first reflow.</attention>	VP15-00-2
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or less, Number of flow process: 1, Preheating temperature; 120 °C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C or below, Time: 3 seconds or less (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are prepared for system development using the μ PD78P4916.

Language Software

RA78K4 Note 1	Assembler package common to the 78K/IV Series
CC78K4 Note 1	C compiler package common to the 78K/IV Series
CC78K4-L Note 1	C compiler library source file common to the 78K/IV Series

PROM Writing Tool

PG-1500	PROM programmer
PA-78P4916GF	Programmer adapter connected to the PG-1500
PG-1500 Controller Note 2	Control program for PG-1500

Debugging Tool

IE-784000-R	In-circuit emulator common to the 78K/IV Series
IE-784000-R-BK	Break board common to the 78K/IV Series
IE-784000-R-EM	Emulation board common to the 78K/IV Series
IE-784915-R-EM1	Emulation board for evaluation of the μ PD784915 Subseries
IE-78000-R-SV3	Interface adapter when using EWS as a host machine
IE-70000-98-IF-B	Interface adapter when using PC-9800 series (except notebook type) as a host machine
IE-70000-98N-IF	Interface adapter and cable when using notebook type PC-9800 series as a host machine
IE-70000-PC-IF-B	Interface adapter when using IBM PC/AT™ as a host machine
EP-784915GF-R	Emulation probe common to the μ PD784915 subseries
EV-9200GF-100	Conversion socket for 100-pin plastic QFP to mount a device on a target system
SM78K4 Note 3	System emulator for all 78K/IV series devices
ID78K4 Note 3	Integrated debugger for IE-784000-R
DF784915 Note 4	Device file common to the μ PD784915 subseries

* Real-time OS

RX78K/IV Note 4	Real-time OS common to the 78K/IV series
MX78K4 Note 2	OS common to the 78K/IV series

NEC μ PD78P4916

Notes 1. • PC-9800 series (for MS-DOSTM) based

- IBM PC/AT and compatibles (for PC DOSTM, WindowsTM, MS-DOS, and IBM DOSTM) based
- HP9000 series 700TM (for HP-UXTM) based
- SPARCstationTM (for SunOSTM) based
- NEWSTM (NEWS-OSTM) based
- 2. PC-9800 series (for MS-DOS) based
 - IBM PC/AT and its compatibles (for PC DOS, Windows, MS-DOS, and IBM DOS) based
- 3. PC-9800 series (for Windows on MS-DOS) based
 - IBM PC/AT and its compatibles (for PC DOS, Windows, MS-DOS, and IBM DOS) based
 - HP9000 series 700 (for HP-UX) based
 - SPARCstation (for SunOS) based
- 4. PC-9800 series (for MS-DOS) based
 - IBM PC/AT and compatibles (for PC DOS, Windows, MS-DOS, and IBM DOS) based
 - HP9000 series 700 (for HP-UX) based
 - SPARCstation (for SunOS) based

Remark The RA78K4, CC78K4, SM78K4, and ID78K4 should be used in combination with the DF784915.

*

★ APPENDIX B. SOCKET DRAWING AND RECOMMENDED FOOTPRINT

Figure B-1. EV-9200GF-100 Drawing (For reference purpose only)

EV-9200GF-100-G0

		L V-9200G1 - 100-G0
ITEM	MILLIMETERS	INCHES
Α	24.6	0.969
В	21	0.827
С	15	0.591
D	18.6	0.732
Е	4-C 2	4-C 0.079
F	0.8	0.031
G	12.0	0.472
Н	22.6	0.89
I	25.3	0.996
J	6.0	0.236
K	16.6	0.654
L	19.3	076
М	8.2	0.323
N	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	φ2.3	φ0.091
S	φ1.5	φ0.059

Figure B-2. Recommended EV-9200GF-100 Footprint (For reference purpose only)

F١	1-02	ററപ്പ	-10C	_D1

ITEM	MILLIMETERS	INCHES
Α	26.3	1.035
В	21.6	0.85
С	0.65±0.02 × 29=18.85±0.05	$0.026^{+0.001}_{-0.002} \times 1.142 = 0.742^{+0.002}_{-0.002}$
D	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
E	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	$0.236^{+0.003}_{-0.002}$
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	φ2.36±0.03	ϕ 0.093 $^{+0.001}_{-0.002}$
K	φ2.3	φ0.091
L	φ1.57±0.03	φ0.062 ^{+0.001} _{-0.002}

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

* APPENDIX C. RELATED DOCUMENTS

Document related to device

Title	Document No.	
	Japanese	English
μPD784915 Subseries User's Manual – Hardware	U10444J	U10444E
μPD784915 Subseries Special Function Register Table	U10976J	_
78K/IV Series User's Manual – Instructions	U10905J	U10905E
78K/IV Series Instruction Table	U10594J	_
78K/IV Series Instruction Set	U10595J	_
78K/IV Series Application Note – Software Basics	U10095J	_

Development tool documents (User's Manual)

Title		Document No.	
		Japanese	English
RA78K Series Assembler Package	Language	EEU-809	EEU-1399
	Operation	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor	EEU-817	EEU-1402	
CC78K Series C Compiler La		EEU-656	EEU-1280
	Operation	EEU-655	EEU-1284
CC78K Series Library Source File		EEU-777	_
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller PC-9800 series – MS-DOS base		EEU-704	EEU-1291
PG-1500 Controller IBM PC series – PC DOS base		EEU-5008	U10540E
IE-784000-R		EEU-5004	EEU-1534
IE-784915-R-EM1 EP-784915GF-R	U10931J	_	
ID78K4 Integrated Debugger – Reference		U10440J	IEU-1412

Embedded-software documents (User's Manual)

Title		Document No.	
		Japanese	English
RX78K/IV Series Real-time OS	Basics	U10604J	_
	Installation	U10603J	_
	Debugger	U10364J	_

Caution The contents of the documents listed above are subject to change without prior notice to users.

Be sure to use the latest edition when starting design.

Other documents *

Title	Document No.	
	Japanese	English
Semiconductor Device Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	IEM-5068	_
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcontroller-Related Product Guide - Third Party Products	MEI-604	_

Caution The contents of the documents listed above are subject to change without prior notice to users. Be sure to use the latest edition when starting design.

[MEMO]

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP is a trademark of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The application circuits and their parameters are for reference only and are not intended for use in actual design-in's.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11