DATA S凡RET

BAV23
 General purpose double diode

Product specification
Supersedes data of November 1993
File under Discrete Semiconductors, SC01

FEATURES

- Small plastic SMD package
- Switching speed: max. 50 ns
- General application
- Continuous reverse voltage: max. 200 V
- Repetitive peak reverse voltage: max. 250 V
- Repetitive peak forward current: max. 625 mA
- Forward voltage: max. 1 V .

APPLICATIONS

- General purpose where high breakdown voltages are required.

DESCRIPTION

The BAV23 consists of two general purpose diodes fabricated in planar technology, and encapsulated in the small plastic SMD SOT143 package. The diodes are not connected.

PINNING

PIN	DESCRIPTION
1	cathode (k1)
2	cathode (k2)
3	anode (a2)
4	anode (a1)

Fig. 1 Simplified outline (SOT143) and symbol.

General purpose double diode

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{\text {RRM }}$	repetitive peak reverse voltage		-	250	V
$\mathrm{~V}_{\text {RRM }}$	repetitive peak reverse voltage	series connection		500	V
$\mathrm{~V}_{R}$	continuous reverse voltage		-	200	V
$\mathrm{~V}_{R}$	continuous reverse voltage	series connection	-	400	V
I_{F}	continuous forward current	single diode loaded; see Fig.2; note 1	-	225	mA
	double diode loaded; see Fig.2; note 1	-	125	mA	

Note

1. Device mounted on an FR4 printed-circuit board.

General purpose double diode

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{F}	forward voltage	$\begin{aligned} & \text { see Fig. } 3 \\ & I_{F}=100 \mathrm{~mA} \\ & I_{F}=200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.25 \\ & \hline \end{aligned}$	
V_{F}	forward voltage	$\begin{aligned} & \text { series connection; see Fig. } 3 \\ & I_{F}=100 \mathrm{~mA} \\ & I_{F}=200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{R}	reverse current	$\begin{aligned} & \text { see Fig. } 5 \\ & \quad V_{R}=200 \mathrm{~V} \\ & V_{R}=200 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \mathrm{nA} \\ \mu \mathrm{~A} \\ \hline \end{array}$
I_{R}	reverse current	series connection $\begin{aligned} \mathrm{V}_{\mathrm{R}} & =400 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{R}} & =400 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \mathrm{nA} \\ \mu \mathrm{~A} \\ \hline \end{array}$
$\mathrm{C}_{\text {d }}$	diode capacitance	$\mathrm{f}=1 \mathrm{MHz}$; $\mathrm{V}_{\mathrm{R}}=0$; see Fig. 6	-	5	pF
		series connection; $\mathrm{f}=1 \mathrm{MHz}$; $\mathrm{V}_{\mathrm{R}}=0$; see Fig. 6	-	2.5	pF
$\mathrm{trr}_{\text {r }}$	reverse recovery time	when switched from $I_{F}=30 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$; see Fig. 7	-	50	ns

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th j } \mathrm{t} \text { tp }}$	thermal resistance from junction to tie-point		360	K/W
$R_{\text {th j-a }}$	thermal resistance from junction to ambient	note 1	500	K/W

Note

1. Device mounted on an FR4 printed-circuit board.

General purpose double diode

GRAPHICAL DATA

Device mounted on an FR4 printed-circuit board.
Fig. 2 Maximum permissible continuous forward current as a function of ambient temperature.

(1) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$; typical values.
(2) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.
(3) $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; maximum values.

Fig. 3 Forward current as a function of forward voltage.

General purpose double diode

(1) $V_{R}=200 \mathrm{~V}$; maximum values.
(2) $\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$; typical values.

Fig. 5 Reverse current as a function of junction temperature.

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 6 Diode capacitance as a function of reverse voltage; typical values.

Fig. 7 Reverse recovery voltage test circuit and waveforms.

PACKAGE OUTLINE

Dimensions in mm.

Fig. 8 SOT143.

DEFINITIONS

Data Sheet Status

Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

