DISCRETE SEMICONDUCTORS

DATA SHEET

BAV23General purpose double diode

Product specification Supersedes data of November 1993 File under Discrete Semiconductors, SC01 1996 Apr 17

General purpose double diode

BAV23

FEATURES

- Small plastic SMD package
- Switching speed: max. 50 ns
- · General application
- Continuous reverse voltage: max. 200 V
- Repetitive peak reverse voltage: max. 250 V
- Repetitive peak forward current: max. 625 mA
- Forward voltage: max. 1 V.

APPLICATIONS

 General purpose where high breakdown voltages are required.

DESCRIPTION

The BAV23 consists of two general purpose diodes fabricated in planar technology, and encapsulated in the small plastic SMD SOT143 package. The diodes are not connected.

PINNING

PIN	DESCRIPTION	
1	cathode (k1)	
2	cathode (k2)	
3	anode (a2)	
4	anode (a1)	

General purpose double diode

BAV23

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage		_	250	V
V _{RRM}	repetitive peak reverse voltage	series connection		500	V
V_R	continuous reverse voltage		_	200	V
V _R	continuous reverse voltage	series connection	_	400	V
I _F	continuous forward current	single diode loaded; see Fig.2; note 1	-	225	mA
		double diode loaded; see Fig.2; note 1	_	125	mA
I _{FRM}	repetitive peak forward current		_	625	mA
I _{FSM}	non-repetitive peak forward current	square wave; T _j = 25 °C prior to surge; see Fig.4			
		t = 1 μs	_	9	A
		t = 100 μs	_	3	A
		t = 10 ms	-	1.7	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C; note 1	_	250	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C

Note

1996 Apr 17 3

^{1.} Device mounted on an FR4 printed-circuit board.

General purpose double diode

BAV23

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _F	forward voltage	see Fig.3			
		I _F = 100 mA	_	1.0	V
		I _F = 200 mA	_	1.25	V
V _F	forward voltage	series connection; see Fig.3			
		I _F = 100 mA	_	2.0	V
		I _F = 200 mA	_	2.5	V
I _R	reverse current	see Fig.5			
		V _R = 200 V	_	100	nA
		V _R = 200 V; T _j = 150 °C	_	100	μΑ
I _R	reverse current	series connection	_		
		V _R = 400 V	_	100	nA
		V _R = 400 V; T _j = 150 °C	_	100	μΑ
C _d	diode capacitance	f = 1 MHz; V _R = 0; see Fig.6	_	5	pF
		series connection; f = 1 MHz; V _R = 0; see Fig.6	_	2.5	pF
t _{rr}	reverse recovery time	when switched from I_F = 30 mA to I_R = 30 mA; R_L = 100 Ω ; measured at I_R = 3 mA; see Fig.7	_	50	ns

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point		360	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	500	K/W

4

Note

1. Device mounted on an FR4 printed-circuit board.

General purpose double diode

BAV23

GRAPHICAL DATA

Device mounted on an FR4 printed-circuit board.

Fig.2 Maximum permissible continuous forward current as a function of ambient temperature.

- (1) $T_j = 150$ °C; typical values.
- (2) $T_j = 25$ °C; typical values.
- (3) $T_j = 25$ °C; maximum values.

Fig.3 Forward current as a function of forward voltage.

1996 Apr 17

5

Fig.4 Maximum permissible non-repetitive peak forward current as a function of pulse duration.

General purpose double diode

BAV23

Fig.6 Diode capacitance as a function of reverse voltage; typical values.

6

1996 Apr 17

General purpose double diode

BAV23

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1996 Apr 17 7