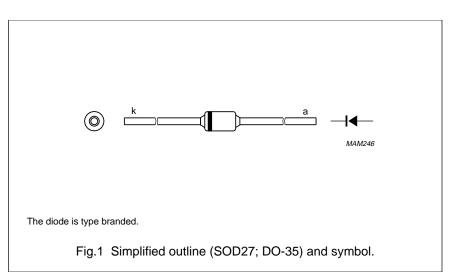

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of April 1992 File under Discrete Semiconductors, SC01 1996 Apr 17

BAY80

FEATURES


- Hermetically sealed leaded glass SOD27 (DO-35) package
- High switching speed: max. 50 ns
- General application
- Continuous reverse voltage: max. 120 V
- Repetitive peak reverse voltage: max. 150 V
- Repetitive peak forward current: max. 625 mA
- Forward voltage: max. 1 V.

APPLICATIONS

 Switching and general purposes in industrial equipment e.g. oscilloscopes, digital voltmeters and video output stages in colour television.

DESCRIPTION

The BAY80 is a switching diode fabricated in planar technology, and encapsulated in the hermetically sealed leaded glass SOD27 (DO-35) package.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage		-	150	V
V _R	continuous reverse voltage		-	120	V
I _F	continuous forward current	see Fig.2; note 1	-	250	mA
I _{FRM}	repetitive peak forward current		-	625	mA
I _{FSM}	non-repetitive peak forward current	square wave; T _j = 25 °C prior to surge; see Fig.4			
		t = 1 μs	-	9	A
		t = 100 μs	-	3	A
		t = 1 s	-	1	A
P _{tot}	total power dissipation	T _{amb} = 25 °C; note 1	-	400	mW
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature		-	175	°C

Note

1. Device mounted on an FR4 printed circuit-board; lead length 10 mm.

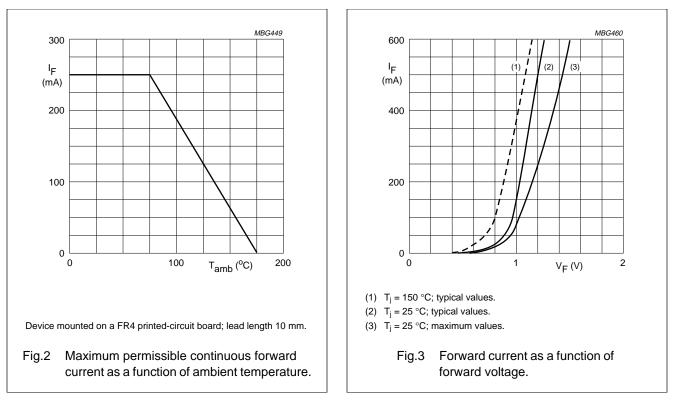
BAY80

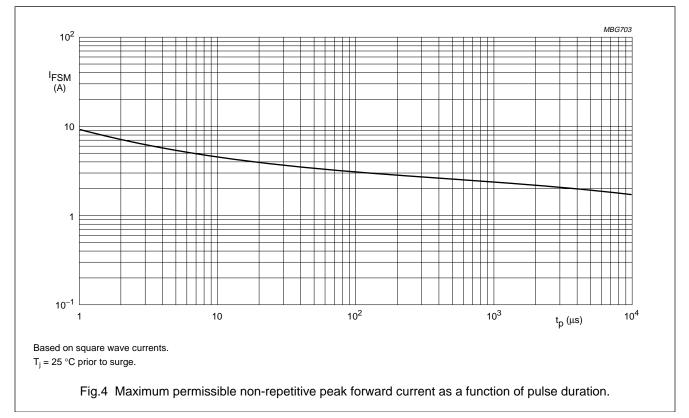
ELECTRICAL CHARACTERISTICS

 T_j = 25 °C; unless otherwise specified.

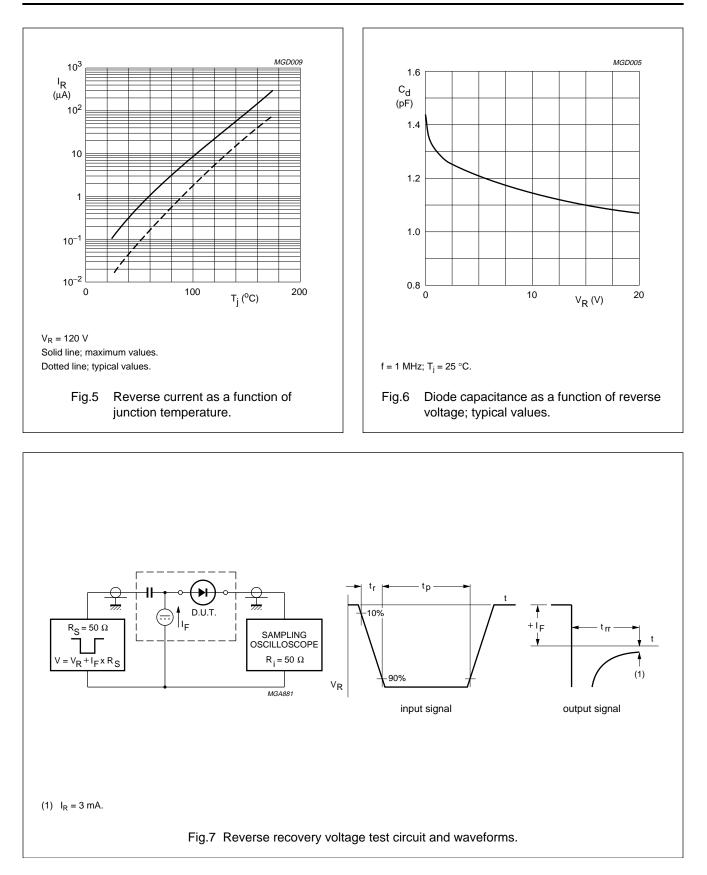
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _F	forward voltage	see Fig.3			
		I _F = 0.1 mA	450	550	mV
		I _F = 10 mA	650	800	mV
		I _F = 50 mA	730	920	mV
		I _F = 100 mA	780	1000	mV
		I _F = 150 mA	_	1.07	V
I _R	reverse current	see Fig.5			
		V _R = 120 V	_	100	nA
		V _R = 120 V; T _j = 150 °C	_	100	μA
C _d	diode capacitance	$f = 1 \text{ MHz}; V_R = 0; \text{ see Fig.6}$	_	6	pF
t _{rr}	reverse recovery time	when switched from $I_F = 30$ mA to $I_R = 30$ mA; $R_L = 100 \Omega$;	_	50	ns
		measured at $I_R = 3 \text{ mA}$; see Fig.7			

THERMAL CHARACTERISTICS

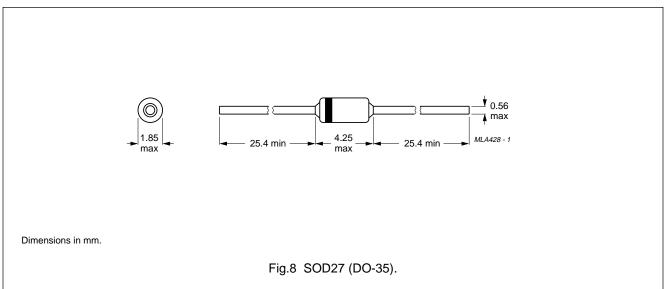

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length 10 mm	240	K/W
R _{th j-a}	thermal resistance from junction to ambient	lead length 10 mm; note 1	375	K/W


Note

1. Device mounted on a printed circuit-board without metallization pad.


BAY80

GRAPHICAL DATA



BAY80

BAY80

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification
	limiting values for extended periods may affect device reliability.
	limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.