FEATURES

- Low forward volt drop
- Fast switching
- Reverse surge capability
- High thermal cycling performance
- Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$
\begin{gathered}
V_{R}=20 \mathrm{~V} / 25 \mathrm{~V} \\
\mathrm{I}_{\mathrm{OAV})}=10 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{F}} \leq 0.54 \mathrm{~V}
\end{gathered}
$$

GENERAL DESCRIPTION

Dual schottky rectifier diodes intended for use as output rectifiers in low voltage, high frequency switched mode power supplies.

The BYV116 series is supplied in the SOT78 (TO220AB) conventional leaded package.
The BYV116B series is supplied in the SOT404 surface mounting package.

PINNING

PIN	DESCRIPTION
1	anode 1 (a)
2	cathode (k) ${ }^{1}$
3	anode 2 (a)
tab	cathode (k)

SOT78 (TO220AB)

SOT404

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

1. It is not possible to make connection to pin 2 of the SOT404 package.

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\text {th } j \text {-mb }}$	Thermal resistance junction	per diode	-	-	4	K/W
	to mounting base	both diodes	-	-	3.5	K/W
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	Thermal resistance junction	SOT78 package, in free air	-	60	-	K/W
	to ambient	SOT404 package, pcb mounted, minimum footprint, FR4 board	-	50	-	K/W

ELECTRICAL CHARACTERISTICS

All characteristics are per diode at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{F}	Forward voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} ; \mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C} \end{aligned}$	-	0.47 0.66	0.54 0.77	V
		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$	-	0.58	0.64	V
I_{R}	Reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RWM }}$.	-	0.05	3	mA
$\mathrm{C}_{\text {d }}$	Junction capacitance	$V_{R}=V_{\text {RWM }} ; \mathrm{T}_{\mathrm{i}}=100{ }^{\circ} \mathrm{C}$ $V_{R}=5 \mathrm{~V} ; \mathrm{f}^{\text {a }}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-	${ }^{5}$	10	$\mathrm{ma}_{\mathrm{pF}}$

Fig.1. Maximum forward dissipation $P_{F}=f\left(I_{F(A V)}\right)$ per diode; square current waveform where $I_{F(A V)}=I_{F(R M S)} \times \sqrt{ } D$.

Fig.2. Maximum forward dissipation $P_{F}=f\left(I_{F(A V)}\right)$ per diode; sinusoidal current waveform where $a=$ form factor $=I_{F(R M S)} / I_{F(A V)}$.

Fig.4. Typical reverse leakage current per diode; $I_{R}=f\left(V_{R}\right) ;$ parameter T_{j}

Fig.5. Typical junction capacitance per diode; $C_{d}=f\left(V_{R}\right) ; f=1 \mathrm{MHz} ; T_{j}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Fig.6. Transient thermal impedance; per diode; $Z_{t h j-m b}=f\left(t_{p}\right)$.

MECHANICAL DATA

MOUNTING INSTRUCTIONS

Dimensions in mm

Fig.8. SOT404 : minimum pad sizes for surface mounting.

Notes

1. Plastic meets UL94 V0 at $1 / 8^{\prime \prime}$.

MECHANICAL DATA

Fig.9. SOT78 (TO220AB); pin 2 connected to mounting base.

Notes

1. Refer to mounting instructions for SOT78 (TO220) envelopes.
2. Epoxy meets UL94 V0 at 1/8".

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not timplied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	
© Philips Electronics N.V. 1998	
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.	
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

