New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

Fast soft-recovery controlled avalanche rectifiers

BYV96 series

Rugged glass package, using a high temperature alloyed construction. This package is hermetically sealed and fatigue free as coefficients of expansion

Fig.1 Simplified outline (SOD57) and symbol.

MAM047

FEATURES

- Glass passivated
- High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- · Available in ammo-pack.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

DESCRIPTION

of all used parts are matched.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYV96D		-	800	v
	BYV96E		-	1000	V
V _R	continuous reverse voltage				
	BYV96D		_	800	V
	BYV96E		-	1000	V
I _{F(AV)}	average forward current	T _{tp} = 55 °C; lead length = 10 mm see Fig 2; averaged over any 20 ms period; see also Fig 6	-	1.5	A
		T _{amb} = 55 °C; PCB mounting (see Fig.11); see Fig 3; averaged over any 20 ms period; see also Fig 6	_	0.8	A
I _{FRM}	repetitive peak forward current	T _{tp} = 55 °C; see Fig 4	_	17	A
		T _{amb} = 55 °C; see Fig 5	-	9	A
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; $T_j = T_{j \text{ max}} \text{ prior to surge;}$ $V_R = V_{RRMmax}$	_	35	A
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j max}$ prior to surge; inductive load switched off	-	10	mJ
T _{stg}	storage temperature		65	+175	°C
Тj	junction temperature	see Fig 7	-65	+175	°C

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS

 T_j = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VF	forward voltage	$I_F = 3 A$; $T_j = T_{j max}$; see Fig 8	_	-	1.35	V
		I _F = 3 A; see Fig 8	-	_	1.60	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				:
	BYV96D		900	-	-	V
	BYV96E		1100	-	-	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig 9	-	_	1	μA
		V _R = V _{RRMmax} ; T _j = 165 °C; see Fig 9	-	_	150	μA
t _{rr}	reverse recovery time	when switched from $I_F = 0.5 A$ to $I_R = 1 A$; measured at $I_R = 0.25 A$; see Fig 12	-	-	300	ns
C _d	diode capacitance	f = 1 MHz; V _R = 0 V; see Fig 10	-	40	-	pF
dl _R dt	maximum slope of reverse recovery current	when switched from $I_F = 1 A$ to $V_R \ge 30 V$ and $dI_F/dt = -1 A/\mu s$; see Fig.13	_	-	6	A/μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	46	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	100	K/W

Fast soft-recovery controlled avalanche rectifiers

BYV96 series

GRAPHICAL DATA

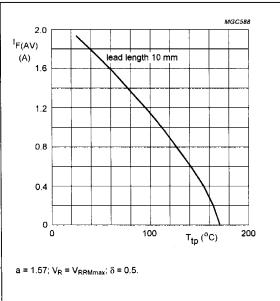
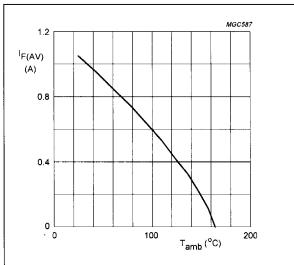
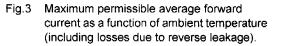




Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

a = 1.57; $V_R = V_{RRMmax}$; δ = 0.5. Device mounted as shown in Fig.11.

