

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES

- VERY LOW CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- LOW FORWARD AND REVERSE RECOVERY TIMES
- HIGH SURGE CURRENT
- THE SPECIFICATIONS AND CURVES ENABLE THE DETERMINATION OF t_{rr} AND I_{RM} AT 100°C UNDER USERS CONDITIONS

DESCRIPTION

Low voltage drop and rectifier suited for switching mode base drive and transistor circuits.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{FRM}	Repetive peak forward current	$t_p \le 20 \mu s$	50	Α
I _{F (AV)}	Average forward current* $ T_{a=} 90^{\circ}C $ $ \delta = 0.5 $		1.5	А
I _{FSM}	Surge non repetitive forward current $t_p = 10 ms$ Sinusoidal		50	А
P _{tot}	Power dissipation* $T_{a=}90^{\circ}C$		1.3	W
$T_{stg} \ T_{j}$	Storage and junction temperature range	- 40 to + 150 - 40 to + 150	°C	
TL	Maximum lead temperature for soldering during case	230	°C	

Symbol	Parameter	Value	Unit
V_{RRM}	Repetitive peak reverse voltage	200	V
V _{RSM}	Non repetitive peak reverse voltage	220	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j - a)}	Junction-ambient*	45	°C/W

^{*} On infinite heatsink with 10mm lead length.

August 1998 Ed: 1A 1/5

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Test Conditions			Тур.	Max.	Unit
I _R	T _j = 25°C	$V_R = V_{RRM}$			10	μΑ
	T _j = 100°C				0.5	mA
V _F	T _j = 25°C	I _F = 4.5A			1.2	V
	T _j = 100°C	I _F = 1.5A			0.85	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions				Тур.	Max.	Unit
t _{rr}	$T_j = 25^{\circ}C$ $V_R = 30V$	I _F = 1A See figure 10	$di_F/dt = -50A/\mu s$			35	ns
Q _{rr}	$T_j = 25^{\circ}C$ $V_R \leq 30V$	I _F = 1A	$di_F/dt = -20A/\mu s$		10		nC
t _{fr}	T _j = 25°C Measured at 1.1 x V _F	I _F = 1A	t _r = 10ns		30		ns
V _{FP}	T _j = 25°C	I _F = 1A	t _r = 10ns		5		V

To evaluate the conduction losses use the following equations:

 $V_F = 0.66 + 0.075 I_F$ $P = 0.06 \times I_{F(AV)} + 0.075 I_F^2_{(RMS)}$

Figure 1. Maximum average power dissipation versus average forward current.

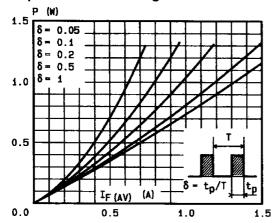


Figure 3. Thermal resistance versus lead Mounting n°1

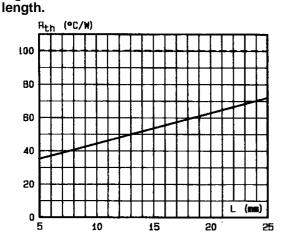


Figure 4. Transient thermal impedance junction-ambient for mounting n^2 versus pulse duration (L = 10 mm).

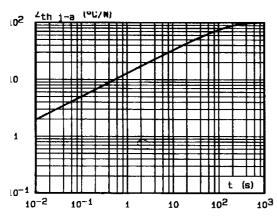
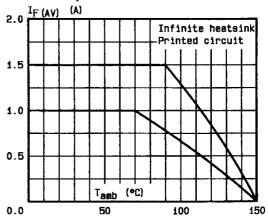



Figure 2. Average forward current versus ambient temperature.

Mounting n°1
INFINITE HEATSINK

Mounting n°2 PRINTED CIRCUIT

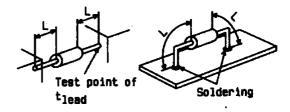


Figure 5. Peak forward current versus peak forward voltage drop (maximum values).

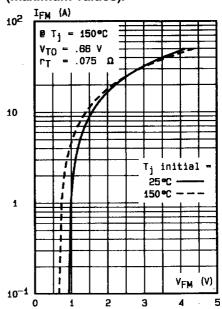


Figure 6. Capacitance versus reverse voltage applied.

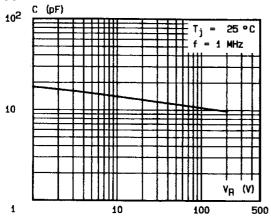


Figure 7. Recovery time versus di_F/dt.

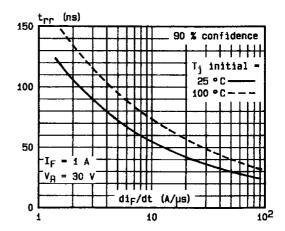


Figure 8. Peak reverse current versus di_F/dt.

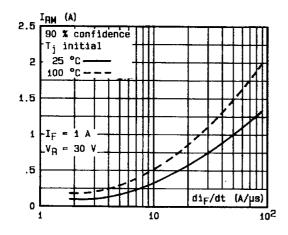
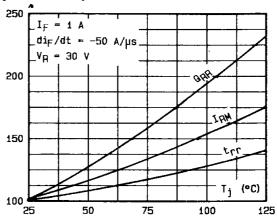
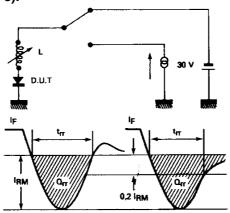
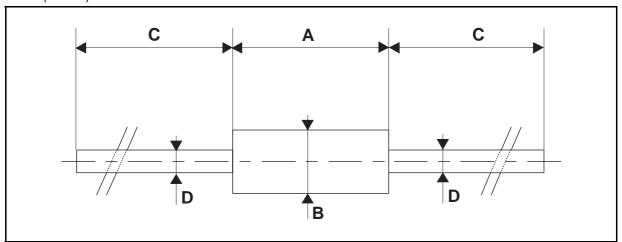


Figure 9. Dynamic parameters versus junction temperature.


Figure 10. Measurement of t_{rr} (Fig. 7) and I_{RM} (Fig. 8).

4/5

PACKAGE MECHANICAL DATA

F 126 (Plastic)

		DIMENSIONS					
	REF.	Millimeters			Inches		
		Min.	Тур.	Max.	Min.	Тур.	Max.
	Α	6.05	6.20	6.35	0.238	0.244	0.250
	В	2.95	3.00	3.05	0.116	0.118	0.120
	C	26		31	1.024		1.220
	D	0.76	0.81	0.86	0.030	0.032	0.034

Cooling method: by convection (method A) Marking: type number Weight: 0.393g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

