GENERAL SEMICONDUCTOR[®]

0.180 (4.6)

0.115 (2.9)

DIÀ.

0.042 (1.07)

0.038 (0.962)

DÍA.

Case Style G4

1.0 (25.4)

MIN.

0.300 (7.6)

MAX.

1.0 (25.4)

MIN.

Dimensions in inches and (millimeters)

*Brazed lead assembly is covered by Patent No. 3,390,306

FE6A thru FE6D

Glass Passivated Ultrafast Rectifier

Reverse Voltage 50 to 200 V

Forward Current 6.0 A

Features

- High temperature metallurgically bonded construction
- Cavity-free glass passivated junction
- Superfast recovery time for high efficiency
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed package
- ♦ Low leakage current
- High surge current capability
- High temperature soldering guaranteed: 350°C/10 seconds, 0.375" (9.5mm) lead length, 5 lbs. (2.3kg) tension

Mechanical Data

Case: Solid glass body Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode end Mounting Position: Any Weight: 0.037 ounce, 1.04 gram

Maximum Ratings and Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	FE6A	FE6B	FE6C	FE6D	UNITS
Maximum repetitive peak reverse voltage	Vrrm	50	100	150	200	V
Maximum RMS voltage	Vrms	35	70	105	140	V
Maximum DC blocking voltage	VDC	50	100	150	200	V
Maximum average forward rectified current 0.375" (9.5mm) lead length at T_L =55°C	lF(AV)		Α			
Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		A			
Typical thermal resistance (NOTE 1, 2)	Roja Rojl		°C/W			
Operating junction and storage temperature range	TJ, TSTG		°C			

Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOLS	FE6A	FE6B	FE6C	FE6D	UNITS
Maximum instantaneous forward voltage at 6.0A	VF		V			
Maximum DC reverse currentTA=25°Cat rated DC blocking voltageTA=100°C	IR		μΑ			
Maximum reverse recovery time at						
IF=0.5A, IR=1.0A, Irr=0.25A	trr	35				ns
Typical junction capacitance at 4V, 1MHz	CJ	100				pF

NOTES:

(1) Thermal resistance from junction to lead 0.375" (9.5mm) lead length with both leads attached to heatsinks.

⁽²⁾ Thermal resistance from junction to ambient at 0.375" (9.5mm) lead length and mounted on P.C.B.

FE6A thru FE6D

Glass Passivated Ultrafast Rectifier

Ratings and Characteristic Curves (TA=25°C unless otherwise noted.)

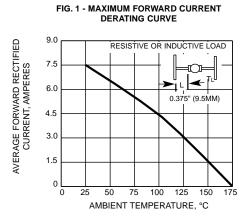
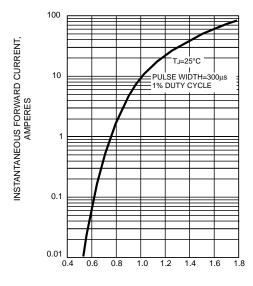



FIG. 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

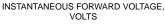
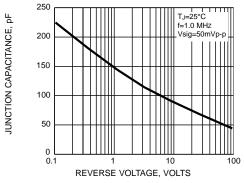



FIG. 5 - TYPICAL JUNCTION CAPACITANCE

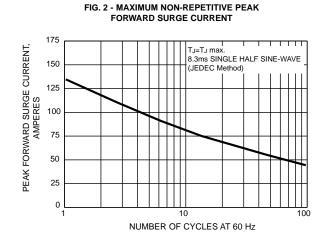
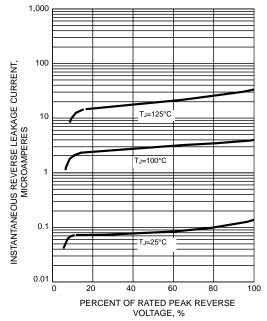



FIG. 4 - TYPICAL REVERSE LEAKAGE CHARACTERISTICS

