MDV04-600

HIGH VOLTAGE ULTRA-FAST DIODE FOR VIDEO

PRELIMINARY DATASHEET

MAJOR PRODUCTS CHARACTERISTICS

$\mathbf{I}_{\text {Fpeak }}$	4 A
$\mathrm{~V}_{\text {RRM }}$	600 V
t_{rr}	55 ns
$\mathrm{~V}_{\mathrm{F}}$ (max)	1.2 V

FEATURES AND BENEFITS

- TURBOSWITCH ${ }^{\text {TM }}$ OUTSTANDING BENEFITS.
- HIGH REVERSE VOLTAGE : 600 V
- LOW POWER LOSSES INDUCING LOW TEMPERATURE AND HIGH RELIABILITY.
- OPTIMIZED COMPROMISE BETWEEN trr AND SOFTNESS FOR VIDEO HORIZONTAL DEFLECTION.

DESCRIPTION

High voltage ultra-fast diode especially designed for modulation and fkyback rectification in standard and figh resolution displays for TV's and monitors. The device is packaged in a DO-201AD axial enveloppe.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	VALUE	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V
$\mathrm{~V}_{\text {RWM }}$	Reverse Working Voltage	600	V
I_{F} peak	Forward Average Current (1)	4	A
	Ambient temperature (2)	115	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {FRM }}$	Repetitive peak forward current	$\mathrm{tp}=5 \mu \mathrm{~s}$ $\mathrm{f}=1 \mathrm{kHz}$	100
	Surge Non Repetitive Forward Current	$\mathrm{tp}=10 \mathrm{~ms}$ sine	150
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range		-40 to 150
$\mathrm{~T}_{\mathrm{j}}$	Max Operating Junction Temperature		150

(1) delta $=0.5$ and triangular waveform
(2) on infinite heatsink with 10 mm lead length

MDV04-600
THERMAL DATA

Symbol	Parameter	Max.	Unit
$R_{\text {th }(j-1)}$	Junction to lead on infinite heatsink	21	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(j-a) }}$	Junction to ambient on printed circuit \quad L lead $=10 \mathrm{~mm}$	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions		Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{R}}{ }^{*}$	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=0.8 \mathrm{~V}_{\mathrm{RWM}}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		50	$\mu \mathrm{~A}$
			0.75	mA		
$\mathrm{~V}_{\mathrm{F}}{ }^{* *}$	Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~A}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		1.28	V
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$		1.20	V

Pulse test: * tp = 5 ms , duty cycle < 2\%
${ }^{* *}$ tp $=380 \mu \mathrm{~s}$, duty cycle $<2 \%$

DYNAMIC ELECTRICAL CHARACTERISTICS
TURN-OFF SWITCHING

Symbol	Parameter	Test Conditions	Typ.	Max.	Unit
t_{rr}	Reverse Recovery Time	I	$\mathrm{F}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{Irr}=$ $0.25 A$	55	75
		I			
		$\mathrm{I}_{\mathrm{F}}=+100 \mathrm{~mA} /-100 \mathrm{~mA}$	130		ns

DYNAMIC ELECTRICAL CHARACTERISTICS
TURN-ON SWITCHING

Symbol	Parameter	Test Conditions	Typ.	Max.	Unit
$t_{\text {tr }}$	Forward Recovery Time	$\begin{aligned} & I_{F}=4 \mathrm{~A} \quad \mathrm{~d} \mathrm{IF}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \text { Measured at } \mathrm{V}_{\mathrm{F}} \text { max. } \\ & \mathrm{Tj}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	$\mu \mathrm{s}$
VFP	Peak Forward Voltage			15	V

To evaluate the maximum conduction losses use the following equation :
$P=\frac{1.0 \times I_{p}}{2} \times \delta+\frac{0.050 \times I_{p}{ }^{\wedge} 2}{3} \times \delta$
δ : duty cycle
I_{p} : Peak current
Ex: for $I_{p}=4 \mathrm{~A}$ and $\delta=0.5, \mathrm{P}=1.2$ Watts.

PACKAGE MECHANICAL DATA

DO-201AD

REF.	DIMENSIONS				NOTES
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A		9.50		0.374	1 - The lead diameter $\varnothing D$ is not controlled over zone E 2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59 "(15 mm)
B	25.40		1.000		
$\varnothing \mathrm{C}$		5.30		0.209	
$\varnothing \mathrm{D}$		1.30		0.051	
E		1.25		0.049	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

