MUR10120E

Preferred Device

SCANSWITCHM

Power Rectifier

For High and Very High Resolution Monitors

This state-of-the-art power rectifier is specifically designed for use as a damper diode in horizontal deflection circuits for high and very high resolution monitors.

- 1200 Volt Blocking Voltage
- 20 mJ Avalanche Energy (Guaranteed)
- 12 Volt (Typical) Peak Transient Overshoot Voltage
- 135 ns (Typical) Forward Recovery Time

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: $260^{\circ} \mathrm{C}$ Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U10120E

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$\mathrm{V}_{\mathrm{RRM}}$ $\mathrm{V}_{\mathrm{RWM}}$ V_{R}	1200	V
Average Rectified Forward Current (Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$)	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	10	A
Peak Repetitive Forward Current (Rated V_{R}, Square Wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$) Per Leg	$\mathrm{I}_{\mathrm{FRM}}$	20	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	$\mathrm{I}_{\mathrm{FSM}}$	100	A
Operating Junction Temperature Range	T_{J}	-65 to +125	${ }^{\circ} \mathrm{C}$
Controlled Avalanche Energy	$\mathrm{W}_{\mathrm{AVAL}}$	20	mJ

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance - Junction to Case	$\mathrm{R}_{\text {өJC }}$	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Typ	Max	Unit
Maximum Instantaneous Forward Voltage (Note 1.) $\begin{aligned} & \left(\mathrm{i}_{\mathrm{F}}=6.5 \mathrm{Amps}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{i}_{\mathrm{F}}=6.5 \mathrm{Amps}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	v_{F}	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$) (Rated dc Voltage, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)	i_{R}	$\begin{gathered} 25 \\ 750 \end{gathered}$	$\begin{gathered} 100 \\ 1000 \end{gathered}$	$\mu \mathrm{A}$
Maximum Reverse Recovery Time ($\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=50 \mathrm{Amps} / \mathrm{ms}$)	$t_{\text {rr }}$	150	175	ns
Maximum Forward Recovery Time $\mathrm{I}_{\mathrm{F}}=6.5 \mathrm{Amps}$, di/dt = 12 Amps/ $/$ s (As Measured on a Deflection Circuit)	$\mathrm{tfr}^{\text {f }}$	135	175	ns
Peak Transient Overshoot Voltage	$\mathrm{V}_{\text {RFM }}$	12	14	Volts

1. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

Figure 3. Current Derating, Case

MUR10120E

Figure 4. Current Derating, Ambient

Figure 5. Power Dissipation

Figure 6. Typical Capacitance

PACKAGE DIMENSIONS

TO-220 TWO-LEAD
CASE 221B-04
ISSUE D

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.595	0.620	15.11	15.75
B	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.82
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.190	0.210	4.83	5.33
H	0.110	0.130	2.79	3.30
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
T	0.235	0.255	5.97	6.48
U	0.000	0.050	0.000	1.27

CATHODE
2. N / A
3. ANODE
4. CATHODE

SCANSWITCH is a trademark of Semiconductor Components Industries, LLC.

Abstract

ON Semiconductor and \square are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

