

SB220 - SB260

2.0A SCHOTTKY BARRIER RECTIFIER

Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- High Current Capability
- Low Power Loss, High Efficiency
- High Surge Current Capability
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications

Mechanical Data

Case: Molded Plastic

• Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208

Polarity: Cathode Band

Weight: 0.40 grams (approx.)

Mounting Position: Any

Marking: Type Number

DO-15						
Dim	Min	Max				
Α	25.4	_				
В	5.50	7.62				
С	0.71	0.864				
D	2.60	3.60				
All Dimensions in mm						

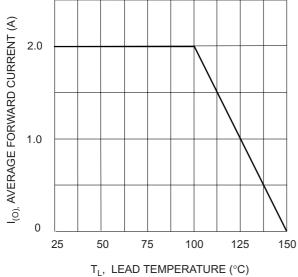
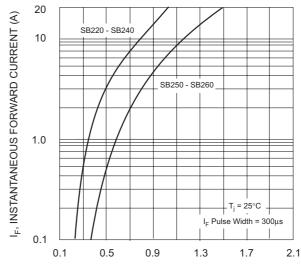
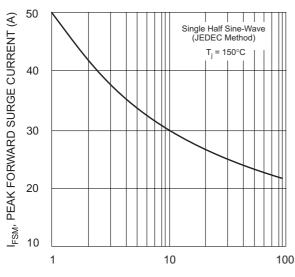
Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

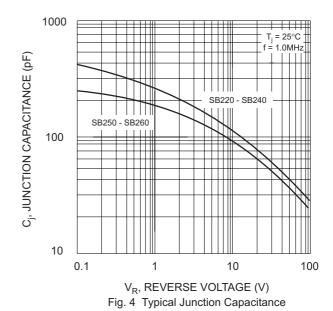
Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	SB220	SB230	SB240	SB250	SB260	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	50	60	V
RMS Reverse Voltage	VR(RMS)	14	21	28	35	42	V
Average Rectified Output Current (Note 1) @T _L = 100°C	lo	2.0					Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	50					А
Forward Voltage @I _F = 2.0	A VFM	0.50 0.70				70	V
	IDM	0.5 10				mA	
Typical Junction Capacitance (Note 2)	Cj	170			140		pF
Typical Thermal Resistance Junction to Lead	RθJL	15					K/W
Typical Thermal Resistance Junction to Ambient (Note 1)	R_{θ} JA	50					K/W
Operating and Storage Temperature Range	Тј, Тѕтс	-65 to +150					°C

Note: 1. Valid provided that leads are kept at ambient temperature at a distance of 9.5mm from the case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.


Fig. 1 Forward Current Derating Curve

V_F, INSTANTANEOUS FORWARD VOLTAGE (V) Fig. 2 Typical Forward Characteristics

NUMBER OF CYCLES AT 60 Hz Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

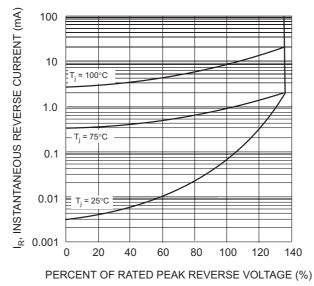


Fig. 5 Typical Reverse Characteristics