
SD103AWS thru SD103CWS

Schottky Diodes

New Product **SOD-323** .012 (0.3) Cathode Band .112 (2.85) 065 (1.65) 100 (2.55) 076 (1.95) Top View Dimensions in inches and (millimeters) .059 (1.5) .049 (1.25) max. .043 (1.1) 06 (0.15) max. (0.1) 004 (0 max. .010 (0.25)

Mounting Pad Layout

Features

- · For general purpose applications.
- The SD103 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.
- The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing, and coupling diodes for fast switching and low logic level applications.
- This diode is also available in the MiniMELF case with the type designations LL103A to LL103C, DO-35 case with the type designations SD103A to SD103C and SOD-123 case with type designations SD103AW to SD103CW.

Mechanical Data

Case: SOD-323 plastic case
Weight: approximately 0.004g
Marking SD103AWS = S6
Code: SD103BWS = S7
SD103CWS = S8

Packaging Codes/Options:

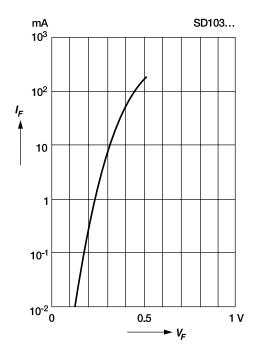
D5/10K per 13" reel (8mm tape), 30K/box D6/3K per 7" reel (8mm tape), 30K/box

Maximum Ratings and Thermal Characteristics (TC = 25°C unless otherwise noted)

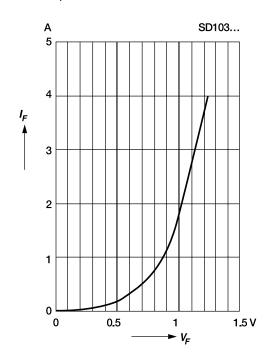
Parameter		Symbol	Value	Unit	
Peak Inverse Voltage	SD103AWS SD103BWS SD103CWS	Vrrm	40 30 20	V	
Power Dissipation (Infinite Heat Sink)		P _{tot}	150 ⁽¹⁾	mW	
Maximum Single Cycle Surge 10µs Square Wave		IFSM	2	А	
Thermal Resistance Junction to Ambient Air		R _θ JA	650 ⁽¹⁾	°C/W	
Junction Temperature		Tj	125 ⁽¹⁾	°C	
Storage Temperature Range		Ts	-55 to +150 ⁽¹⁾	°C	

Note:

SD103AWS thru SD103CWS


Schottky Diodes

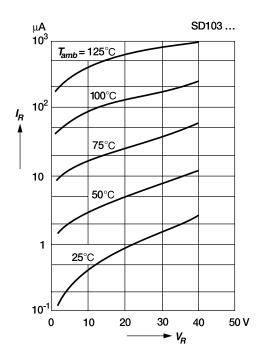
Electrical Characteristics (T_J = 25°C unless otherwise noted)


Parameter		Symbol	Test Condition	Min	Тур	Max	Unit
Leakage Current	SD103AWS SD103BWS SD103CWS	lR	V _R = 30V V _R = 20V V _R = 10V		_ _ _	5 5 5	μΑ
Forward Voltage Drop		VF	IF = 20mA IF = 200mA	_	_	0.37 0.6	V
Junction Capacitance		Ctot	V _R = 0V f = 1MHz	_	50	_	pF
Reverse Recovery Time		trr	IF = IR = 50mA to 200mA recover to 0.1I _R	_	10	_	ns

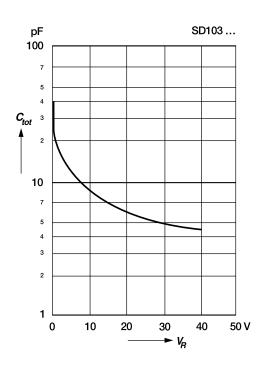
Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Typical variation of fwd. current vs. fwd. voltage for primary conduction through the Schottky barrier

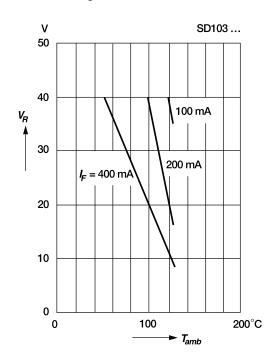
Typical high current forward conduction curve $t_p = 300$ ms, duty cycle = 2%



SD103AWS thru SD103CWS


Schottky Diodes

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)


Typical variation of reverse current at various temperatures

Typical capacitance versus reverse voltage

Blocking voltage deration versus temperature at various average forward currents

