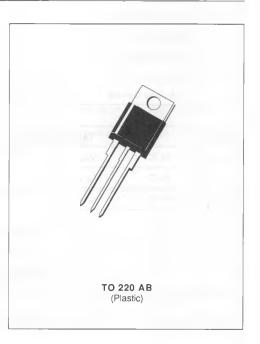


THBT 200 D

TRISIL

DESCRIPTION


This protection device has been especially designed for subscriber line-card and terminal protection. By itself, it enables to protect integrated SLIC against transient overvoltages. A diode clips positive overloads and breakover device negative overloads.

Its ion-implanted technology confers excellent electrical characteristics on it.

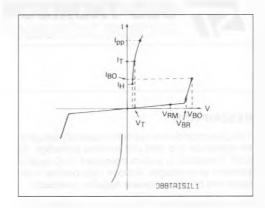
This is why this THBT 200 D easily corresponds to the main protection standard norms which are related to the overvoltages on subscribers lines.

IN ACCORDANCE WITH FOLLOWING STANDARDS:

CCITT K17 - K20	_ε 10/700 μs	1.5 kV
	l 5/310 μs	38 A
VDE 0433	_f 10/700 μs	2 kV
	l 5/200 μs	50 A
CNET	₁ 0.5/700 μs	1.5 kV
	l 0.2/310 μs	38 A

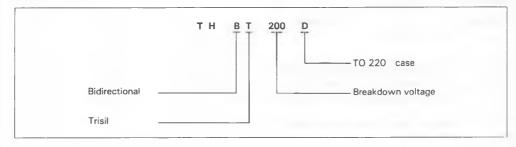
ABSOLUTE RATINGS (limiting values) (T₁ = 25 °C)

Symbol	Parameter		Value	Unit
Ipp	Peak Pulse Current	1 ms expo	75	А
		8-20 μs expo*	150	
I _{TSM}	Non Repetitive Surge Peak on-state Current	t _p = 20 ms	30	А
di/dt	Critical Rate of Rise of on-state Current	Non Repetitive	100	A/μs
T _{stg}	Storage and Operating Junction Temperature Range		- 40 to 150 150	C
TL	Maximum Lead Temperature for Soldering During 10 s at 4 mm from Case		230	°C

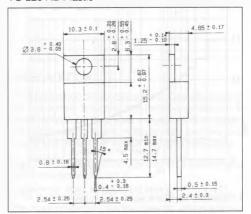

^{*} ANSI STD C62.

THERMAL RESISTANCES

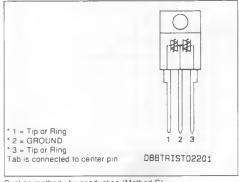
Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to Case for DC	5	°C/W
R _{th(j-a)}	Junction to Ambient	60	°C/W


ELECTRICAL CHARACTERISTICS

Symbol	Parameter		
V _{RM}	Stand-off Voltage		
V _{BR}	Breakdown Voltage		
V _{BO}	Clamping Voltage		
I _H	Holding Current		
V _T	On-state Voltage		
I _{BO}	Breakover Current		
Ipp	Peak-pulse Current		

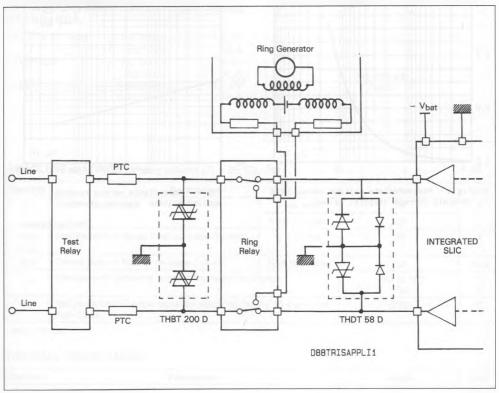

Symbol		Test Conditions		Min.	Тур.	Max.	Unit
I _{RM}	T _j = 25 °C	V _{RM} = 180 V				10	μА
V _{BR}	T ₁ = 25 °C	I _R = 1 mA		200			V
V _{BO}	T _j = 25 °C	t _p = 100 μs				290	V
I _{BO}	T ₁ = 25 °C	t _p = 100 μs		150		800	mA
I _H	T _j = 25 °C	I _T = 2 A		150			mA
V _T	T _j = 25 °C	I _T = 5 A	t _p = 100 μs			3	V
ατ					20		10-4/°C
С	T _j = 25 ℃	F = 1 MHz	V _R = 5 V			200	pF
dv/dt	T _j = 25 °C	Exponential Ramp	67 % V _{BR}	5000			V/µs

ORDER CODE



PACKAGE MECHANICAL DATA

TO 220 AB Plastic



PIN CONNECTIONS

Cooling method : by conduction (Method C) Marking : type number Weight : 2 g.

APPLICATION CIRCUIT

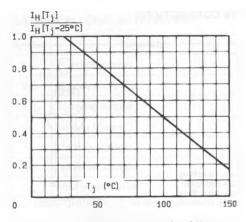


Fig.1 - Relative variation of holding current versus junction temperature.

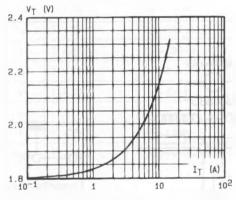


Fig.3 - Peak on-state voltage versus peak on-state current (typical values).

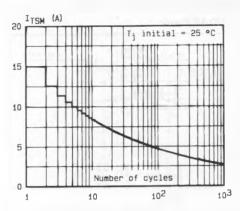


Fig.2 - Non_repetitive surge peak on-state current versus number of cycles (1 cycle = 20 ms).

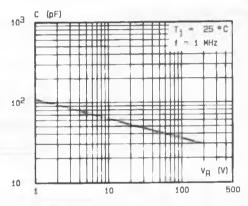


Fig.4 - Capacitance versus reverse applied voltage (typical values).

DA9THAT200024