

Intel[®] Core™2 Extreme Processor QX9650[∆]

Datasheet

- on 45 nm process in the 775 land package

November 2007

Document Number: 318726-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, REALTING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

The Intel[®] Core™2 Extreme processor QX9650 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

^AIntel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.

Intel® 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers, and applications enabled for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary depending on your hardware and software configurations. See http://www.intel.com/info/em64t for more information including details on which processors support Intel 64, or consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

*Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

‡ Not all specified units of this processor support Enhanced Intel SpeedStep® Technology. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more information.

Not all specified units of this processor support Thermal Monitor 2, Enhanced HALT State and Enhanced Intel SpeedStep® Technology. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more information.

Intel, Pentium, Intel Core, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All Rights Reserved.

Contents

1	Intro	oduction	9
	1.1	Terminology	9
		1.1.1 Processor Terminology Definitions	. 10
	1.2	References	. 11
2	Elect	rical Specifications	. 13
	2.1	Power and Ground Lands	
	2.2	Decoupling Guidelines	
		2.2.1 VCC Decoupling	
		2.2.2 Vtt Decoupling	
		2.2.3 FSB Decoupling	. 13
	2.3	Voltage Identification	. 14
	2.4	Reserved, Unused, and TESTHI Signals	. 16
	2.5	Power Segment Identifier (PSID)	. 16
	2.6	Voltage and Current Specification	
		2.6.1 Absolute Maximum and Minimum Ratings	
		2.6.2 DC Voltage and Current Specification	
		2.6.3 VCC Overshoot	
		2.6.4 Die Voltage Validation	
	2.7	Signaling Specifications	
		2.7.1 FSB Signal Groups	
		2.7.2 CMOS and Open Drain Signals	
		2.7.3 Processor DC Specifications	
		2.7.3.1 Platform Environment Control Interface (PECI) DC Specifications 2.7.3.2 GTL+ Front Side Bus Specifications	
	2.8	Clock Specifications	
	2.0	2.8.1 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking	
		2.8.2 FSB Frequency Select Signals (BSEL[2:0])	
		2.8.3 Phase Lock Loop (PLL) and Filter	
		2.8.4 BCLK[1:0] Specifications	
3	Dack	age Mechanical Specifications	21
3	3.1	Package Mechanical Drawing	
	3.1	Processor Component Keep-Out Zones	
	3.3	Package Loading Specifications	
	3.4	Package Handling Guidelines	
	3.5	Package Insertion Specifications	
	3.6	Processor Mass Specification	
	3.7	Processor Materials	
	3.8	Processor Markings	
	3.9	Processor Land Coordinates	
4	Land	Listing and Signal Descriptions	
4	4.1	Processor Land Assignments	
	4.1	Alphabetical Signals Reference	
		•	
5		mal Specifications and Design Considerations	
	5.1	Processor Thermal Specifications	
		5.1.1 Thermal Specifications	
		5.1.2 Thermal Metrology	
	5.2	Processor Thermal Features	
		5.2.1 Thermal Monitor	74

		5.2.2	Thermal Monitor 2	75
		5.2.3	On-Demand Mode	76
		5.2.4	PROCHOT# Signal	77
		5.2.5	THERMTRIP# Signal	77
	5.3	Platfor	m Environment Control Interface (PECI)	78
		5.3.1	Introduction	
			5.3.1.1 TCONTROL and TCC activation on PECI-Based Systems	78
		5.3.2	PECI Specifications	79
			5.3.2.1 PECI Device Address	
			5.3.2.2 PECI Command Support	79
			5.3.2.3 PECI Fault Handling Requirements	
			5.3.2.4 PECI GetTemp0() Error Code Support	79
6	Feat	ures		81
	6.1	Power-	-On Configuration Options	81
	6.2		Control and Low Power States	
		6.2.1	Normal State	82
		6.2.2	HALT and Extended HALT Powerdown States	82
			6.2.2.1 HALT Powerdown State	82
			6.2.2.2 Extended HALT Powerdown State	
		6.2.3	Stop Grant State	83
		6.2.4	Extended HALT Snoop or HALT Snoop State,	
			Stop Grant Snoop State	
			6.2.4.1 HALT Snoop State, Stop Grant Snoop State	
			6.2.4.2 Extended HALT Snoop State	
		6.2.5	Enhanced Intel SpeedStep® Technology	84
7	Boxe	ed Proce	essor Specifications	85
	7.1	Introd	uction	85
	7.2	Mecha	nical Specifications	86
		7.2.1	Boxed Processor Cooling Solution Dimensions	86
		7.2.2	Boxed Processor Fan Heatsink Weight	87
		7.2.3	Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly	87
	7.3	Electri	cal Requirements	87
		7.3.1	Fan Heatsink Power Supply	87
	7.4	Therm	al Specifications	
		7.4.1	Boxed Processor Cooling Requirements	
		7.4.2	Variable Speed Fan	
	7.5	Boxed	Intel® Core™2 Extreme Processor Specifications	
		7.5.1	Boxed Intel [®] Core™2 Extreme Processor Fan Heatsink Weight	92
8	Debu	ug Tools	s Specifications	95
	8.1		Analyzer Interface (LAI)	
		8.1.1	Mechanical Considerations	
		8.1.2	Electrical Considerations	

ь.					-
	ıu	ш		ᆫ	3
-		-	-	_	_

2-1	V _{CC} Static and Transient Tolerance	20
2-2	V _{CC} Overshoot Example Waveform	21
2-3	Differential Clock Waveform	29
2-4	Measurement Points for Differential Clock Waveforms	30
3-1	Processor Package Assembly Sketch	
3-2	Processor Package Drawing (Sheet 1 of 3)	
3-3	Processor Package Drawing (Sheet 2 of 3)	33
3-4	Processor Package Drawing (Sheet 3 of 3)	34
3-5	Processor Top-Side Markings Example	
3-6	Processor Land Coordinates and Quadrants, Top View	37
4-1	land-out Diagram (Top View – Left Side)	
4-2	land-out Diagram (Top View – Right Side)	41
5-1	Thermal Profile	73
5-2	Case Temperature (TC) Measurement Location	74
5-3	Thermal Monitor 2 Frequency and Voltage Ordering	76
5-4	Conceptual Fan Control Diagram on PECI-Based Platforms	
6-1	Processor Low Power State Machine	
7-1	Mechanical Representation of the Boxed Processor	85
7-2	Space Requirements for the Boxed Processor (side view)	86
7-3	Space Requirements for the Boxed Processor (top view)	
7-4	Space Requirements for the Boxed Processor (overall view)	
7-5	Boxed Processor Fan Heatsink Power Cable Connector Description	
7-6	Baseboard Power Header Placement Relative to Processor Socket	
7-7	Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)	
7-8	Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)	89
7-9	Boxed Processor Fan Heatsink Set Points	90
7-10	Space Requirements for the Boxed Processor (side view)	
7-11	Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)	92
7-12	Royed Processor Fan Heatsink Airsnace Keenout Requirements (side 2 view)	93

Tables

1-1	References	.11
2-1	Voltage Identification Definition	.15
2-2	Absolute Maximum and Minimum Ratings	.17
2-3	Voltage and Current Specifications	.18
2-4	V _{CC} Static and Transient Tolerance	
2-5	V _{CC} Overshoot Specifications	. 20
2-6	FSB Signal Groups	. 22
2-7	Signal Characteristics	.23
2-8	Signal Reference Voltages	.23
2-9	GTL+ Signal Group DC Specifications	.24
2-10	Open Drain and TAP Output Signal Group DC Specifications	
2-11	CMOS Signal Group DC Specifications	.25
2-12	PECI DC Electrical Limits	. 25
2-13	GTL+ Bus Resistance Definitions	.26
2-14	Core Frequency to FSB Multiplier Configuration	.27
2-15	BSEL[2:0] Frequency Table for BCLK[1:0]	.28
2-16	Front Side Bus Differential BCLK Specifications	.28
2-17	FSB Differential Clock Specifications (1333 MHz FSB)	.29
3-1	Processor Loading Specifications	. 35
3-2	Package Handling Guidelines	. 35
3-3	Processor Materials	. 36
4-1	Alphabetical Land Assignments	. 42
4-2	Numerical Land Assignment	.5
4-3	Signal Description	.60
5-1	Processor Thermal Specifications	.72
5-2	Thermal Profile	.73
5-3	GetTemp0() Error Codes	.79
6-1	Power-On Configuration Option Signals	.81
7-1	Fan Heatsink Power and Signal Specifications	
7-2	Fan Heatsink Power and Signal Specifications	.90

Revision History

Revision Number	Description	Revision Date
-001	Initial release	November 2007

Intel[®] Core™2 Extreme Processor QX9650 Features

- · Available at 3.00 GHz
- Enhanced Intel Speedstep[®] Technology
- Supports Intel[®] 64^Φ architecture
- Supports Intel[®] Virtualization Technology
- · Supports Execute Disable Bit capability
- · FSB frequency at 1333 MHz
- Binary compatible with applications running on previous members of the Intel microprocessor line
- · Advance Dynamic Execution
- · Very deep out-of-order execution
- · Enhanced branch prediction

- Optimized for 32-bit applications running on advanced 32-bit operating systems
- Intel[®] Advanced Smart Cache
- · Two 6 MB Level 2 caches
- Intel[®] Advanced Digital Media Boost
- Enhanced floating point and multimedia unit for enhanced video, audio, encryption, and 3D performance
- · Power Management capabilities
- · System Management mode
- · Multiple low-power states
- 8-way cache associativity provides improved cache hit rate on load/store operations
- 775-land Package

The Intel Core[™]2 Extreme processor QX9650 delivers Intel's advanced, powerful processors for desktop PCs. The processor is designed to deliver performance across applications and usages where end-users can truly appreciate and experience the performance. These applications include Internet audio and streaming video, image processing, video content creation, speech, 3D, CAD, games, multimedia, and multitasking user environments.

Intel $^{\circledR}$ 64 Ф architecture enables the processor to execute operating systems and applications written to take advantage of the Intel 64 architecture. The processor, supporting Enhanced Intel Speedstep $^{\circledR}$ technology, allows tradeoffs to be made between performance and power consumption.

The Intel Core™2 Extreme processor QX9650 also includes the Execute Disable Bit capability. This feature, combined with a supported operating system, allows memory to be marked as executable or non-executable.

The Intel Core™2 Extreme processor QX9650 support Intel® Virtualization Technology. Virtualization Technology provides silicon-based functionality that works together with compatible Virtual Machine Monitor (VMM) software to improve on software-only solutions.

§ §

1 Introduction

The Intel[®] Core[™]2 Extreme processor QX9650 is based on the Enhanced Intel[®] Core[™] microarchitecture. The Enhanced Intel Core microarchitecture combines the performance of previous generation Desktop products with the power efficiencies of a low-power microarchitecture to enable smaller, quieter systems. The Intel[®] Core[™]2 Extreme processor QX9650 is a 64-bit processor that maintains compatibility with IA-32 software.

The processor uses a Flip-Chip Land Grid Array (FC-LGA6) package technology, and plugs into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the LGA775 socket.

Note:

In this document the Intel $^{\circledR}$ Core $^{\textmd{TM}}$ 2 Extreme processor QX9650 may be referred to simply as "the processor."

The processor is based on 45 nm process technology. The processor features the Intel® Advanced Smart Cache, a shared multi-core optimized cache that significantly reduces latency to frequently used data. The processor features a 1333 MHz front side bus (FSB) and two independent but shared 6 MB of L2 cache (2x6M). The processor supports all the existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming SIMD Extension 3 (SSSE3), and the Streaming SIMD Extensions 4.1 (SSE4.1). The processor supports several Advanced Technologies: Execute Disable Bit, Intel® 64 architecture (Intel® 64), Enhanced Intel SpeedStep® Technology, and Intel® Virtualization Technology (Intel® VT).

The processor's front side bus (FSB) uses a split-transaction, deferred reply protocol. The FSB uses Source-Synchronous Transfer of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 10.7 GB/s.

The processor uses some of the infrastructure already enabled by 775_VR_CONFIG_05 platforms including heatsink, heatsink retention mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly may be completed from the top of the baseboard and should not require any special tooling.

1.1 Terminology

A '#' symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the '#' symbol implies that the signal is inverted. For example, D[3:0] = 'HLHL' refers to a hex 'A', and D[3:0]# = 'LHLH' also refers to a hex 'A' (H= High logic level, L= Low logic level).

"Front Side Bus" refers to the interface between the processor and system core logic (a.k.a. the chipset components). The FSB is a multiprocessing interface to processors, memory, and I/O.

1.1.1 Processor Terminology Definitions

Commonly used terms are explained here for clarification:

- Intel[®] Core[™]2 Extreme processor QX9650 Quad core Extreme Edition processor in the FC-LGA6 package with two 6 MB L2 cache.
- Processor For this document, the term processor is the generic form of the Intel[®] Core™2 Extreme processor QX9650.
- Enhanced Intel® CoreTM microarchitecture A new foundation for Intel® architecture-based desktop, mobile and mainstream server multi-core processors. For additional information refer to: http://www.intel.com/technology/architecture/coremicro/
- Keep-out zone The area on or near the processor that system design can not utilize.
- **Processor core** Processor die with integrated L2 cache.
- LGA775 socket The processor mates with the system board through a surface mount, 775-land, LGA socket.
- Integrated heat spreader (IHS) —A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.
- Retention mechanism (RM) Since the LGA775 socket does not include any
 mechanical features for heatsink attach, a retention mechanism is required.
 Component thermal solutions should attach to the processor via a retention
 mechanism that is independent of the socket.
- FSB (Front Side Bus) The electrical interface that connects the processor to the chipset. Also referred to as the processor system bus or the system bus. All memory and I/O transactions as well as interrupt messages pass between the processor and chipset over the FSB.
- Storage conditions Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks. Upon exposure to "free air" (i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.
- Functional operation Refers to normal operating conditions in which all processor specifications, including DC, AC, system bus, signal quality, mechanical and thermal are satisfied.
- Execute Disable Bit Allows memory to be marked as executable or non-executable, when combined with a supporting operating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer over run vulnerabilities and can thus help improve the overall security of the system. See the Intel[®] Architecture Software Developer's Manual for more detailed information.
- Intel® 64 Architecture An enhancement to Intel's IA-32 architecture, allowing the processor to execute operating systems and applications written to take advantage of Intel 64 architecture. Further details on Intel 64 architecture and programming model can be found in the Software Developer Guide at http://developer.intel.com/technology/64bitextensions/.
- Enhanced Intel SpeedStep® Technology Enhanced Intel SpeedStep Technology allows trade-offs to be made between performance and power consumptions, based on processor utilization. This may lower average power consumption (in conjunction with OS support).

- Intel® Virtualization Technology (Intel® VT) A set of hardware enhancements to Intel server and client platforms that can improve virtualization solutions. Intel VT will provide a foundation for widely-deployed virtualization solutions and enables more robust hardware assisted virtualization solutions. More information can be found at: http://www.intel.com/technology/virtualization/
- Platform Environment Control Interface (PECI) A proprietary one-wire bus interface that provides a communication channel between the processor and chipset components to external monitoring devices.

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document.

Table 1-1. References

Document	Location
Intel [®] Core m 2 Extreme Processor QX9650 Specification Update	http://www.intel.com/ design/processor/specupdt/ 318727.htm
Intel [®] Core ^{m} 2 Extreme Processor and Intel [®] Core ^{m} 2 Quad Processor TMDG	http://www.intel.com/ design/processor/designex/ 315594.htm
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket	http://www.intel.com/ design/processor/applnots/ 313214.htm
Balanced Technology Extended (BTX) System Design Guide	www.formfactors.org
LGA775 Socket Mechanical Design Guide	http://intel.com/design/ Pentium4/guides/ 302666.htm
Intel® 64 and IA-32 Intel Architecture Software Developer's Manuals	
Volume 1: Basic Architecture	
Volume 2A: Instruction Set Reference, A-M	http://www.intel.com/
Volume 2B: Instruction Set Reference, N-Z	products/processor/
Volume 3A: System Programming Guide	manuals/
Volume 3B: System Programming Guide	

§

2 Electrical Specifications

2.1 Power and Ground Lands

The processor has VCC (power), VTT, and VSS (ground) inputs for on-chip power distribution. All power lands must be connected to V_{CC} , while all VSS lands must be connected to a system ground plane. The processor VCC lands must be supplied the voltage determined by the **V**oltage **ID**entification (VID) lands.

The signals denoted as VTT provide termination for the front side bus and power to the I/O buffers. A separate supply must be implemented for these lands, that meets the V_{TT} specifications outlined in Table 2-3.

2.2 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings. This may cause voltages on power planes to sag below their minimum specified values if bulk decoupling is not adequate. Larger bulk storage (C_{BULK}), such as electrolytic or aluminum-polymer capacitors, supply current during longer lasting changes in current demand by the component, such as coming out of an idle condition. Similarly, they act as a storage well for current when entering an idle condition from a running condition. The motherboard must be designed to ensure that the voltage provided to the processor remains within the specifications listed in Table 2-3. Failure to do so can result in timing violations or reduced lifetime of the component.

2.2.1 V_{CC} Decoupling

V_{CC} regulator solutions need to provide sufficient decoupling capacitance to satisfy the processor voltage specifications. This includes bulk capacitance with low effective series resistance (ESR) to keep the voltage rail within specifications during large swings in load current. In addition, ceramic decoupling capacitors are required to filter high frequency content generated by the front side bus and processor activity. Consult the *Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket.*

2.2.2 V_{TT} Decoupling

Decoupling must be provided on the motherboard. Decoupling solutions must be sized to meet the expected load. To ensure compliance with the specifications, various factors associated with the power delivery solution must be considered including regulator type, power plane and trace sizing, and component placement. A conservative decoupling solution would consist of a combination of low ESR bulk capacitors and high frequency ceramic capacitors.

2.2.3 FSB Decoupling

The processor integrates signal termination on the die. In addition, some of the high frequency capacitance required for the FSB is included on the processor package. However, additional high frequency capacitance must be added to the motherboard to properly decouple the return currents from the front side bus. Bulk decoupling must also be provided by the motherboard for proper [A]GTL+ bus operation.

2.3 Voltage Identification

The Voltage Identification (VID) specification for the processor is defined by the *Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket.* The voltage set by the VID signals is the reference VR output voltage to be delivered to the processor VCC lands (see Chapter 2.6.3 for V_{CC} overshoot specifications). Refer to Table 2-11 for the DC specifications for these signals. Voltages for each processor frequency is provided in Table 2-3.

Note:

To support the Deeper Sleep State the platform must use a VRD 11.1 compliant solution. The Deeper Sleep State also requires additional platform support. For further information on Voltage Regulator-Down solutions, contact your Intel field representative.

Individual processor VID values may be calibrated during manufacturing such that two devices at the same core speed may have different default VID settings. This is reflected by the VID Range values provided in Table 2-3. Refer to the $Intel^{@}$ $Core^{TM}2$ Extreme Processor QX9650 Specification Update for further details on specific valid core frequency and VID values of the processor. Note that this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep[®] technology, or Extended HALT State).

The processor uses six voltage identification signals, VID[6:1], to support automatic selection of power supply voltages. Table 2-1 specifies the voltage level corresponding to the state of VID[6:1]. A '1' in this table refers to a high voltage level and a '0' refers to a low voltage level. If the processor socket is empty (VID[6:1] = 111111), or the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself. The Voltage Regulator Design Guide defines VID [7:0], VID7 and VID0 are not outputs of the processor but are strapped to V_{SS} on the processor package. VID0 and VID7 must be connected to the VR controller for compatibility with future processors.

The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage (V_{CC}). This will represent a DC shift in the load line. It should be noted that a low-to-high or high-to-low voltage state change may result in as many VID transitions as necessary to reach the target core voltage. Transitions above the specified VID are not permitted. Table 2-3 includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Table 2-4 and Figure 2-1as measured across the VCC_SENSE and VSS_SENSE lands.

The VRM or VRD used must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in Table 2-3 and Table 2-4. Refer to the Voltage Regulator Design Guide for further details.

Table 2-1. Voltage Identification Definition

VID6	VID5	VID4	VID3	VID2	VID1	V _{CC_MAX}
1	1	1	1	0	1	0.8500
1	1	1	1	0	0	0.8625
1	1	1	0	1	1	0.8750
1	1	1	0	1	0	0.8875
1	1	1	0	0	1	0.9000
1	1	1	0	0	0	0.9125
1	1	0	1	1	1	0.9250
1	1	0	1	1	0	0.9375
1	1	0	1	0	1	0.9500
1	1	0	1	0	0	0.9625
1	1	0	0	1	1	0.9750
1	1	0	0	1	0	0.9875
1	1	0	0	0	1	1.0000
1	1	0	0	0	0	1.0125
1	0	1	1	1	1	1.0250
1	0	1	1	1	0	1.0375
1	0	1	1	0	1	1.0500
1	0	1	1	0	0	1.0625
1	0	1	0	1	1	1.0750
1	0	1	0	1	0	1.0875
1	0	1	0	0	1	1.1000
1	0	1	0	0	0	1.1125
1	0	0	1	1	1	1.1250
1	0	0	1	1	0	1.1375
1	0	0	1	0	1	1.1500
1	0	0	1	0	0	1.1625
1	0	0	0	1	1	1.1750
1	0	0	0	1	0	1.1875
1	0	0	0	0	1	1.2000
1	0	0	0	0	0	1.2125
0	1	1	1	1	1	1.2250

VID6	VI D5	VID4	VID3	VID2	VID1	V _{CC_MAX}
0	1	1	1	1	0	1.2375
0	1	1	1	0	1	1.2500
0	1	1	1	0	0	1.2625
0	1	1	0	1	1	1.2750
0	1	1	0	1	0	1.2875
0	1	1	0	0	1	1.3000
0	1	1	0	0	0	1.3125
0	1	0	1	1	1	1.3250
0	1	0	1	1	0	1.3375
0	1	0	1	0	1	1.3500
0	1	0	1	0	0	1.3625
0	1	0	0	1	1	1.3750
0	1	0	0	1	0	1.3875
0	1	0	0	0	1	1.4000
0	1	0	0	0	0	1.4125
0	0	1	1	1	1	1.4250
0	0	1	1	1	0	1.4375
0	0	1	1	0	1	1.4500
0	0	1	1	0	0	1.4625
0	0	1	0	1	1	1.4750
0	0	1	0	1	0	1.4875
0	0	1	0	0	1	1.5000
0	0	1	0	0	0	1.5125
0	0	0	1	1	1	1.5250
0	0	0	1	1	0	1.5375
0	0	0	1	0	1	1.5500
0	0	0	1	0	0	1.5625
0	0	0	0	1	1	1.5750
0	0	0	0	1	0	1.5875
0	0	0	0	0	1	1.6000
0	0	0	0	0	0	OFF

2.4 Reserved, Unused, and TESTHI Signals

All RESERVED lands must remain unconnected. Connection of these lands to V_{CC} , V_{SS} , V_{TT} , or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 4 for a land listing of the processor and the location of all RESERVED lands.

In a system level design, on-die termination has been included by the processor to allow signals to be terminated within the processor silicon. Most unused GTL+ inputs should be left as no connects as GTL+ termination is provided on the processor silicon. However, see Table 2-6 for details on GTL+ signals that do not include on-die termination.

Unused active high inputs, should be connected through a resistor to ground (V_{SS}). Unused outputs can be left unconnected, however this may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. Resistor values should be within \pm 20% of the impedance of the motherboard trace for front side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the same value as the on-die termination resistors (R_{TT}). For details, see Table 2-13.

TAP and CMOS signals do not include on-die termination. Inputs and used outputs must be terminated on the motherboard. Unused outputs may be terminated on the motherboard or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing.

All TESTHI[10:7:0] lands should be individually connected to V_{TT} via a pull-up resistor which matches the nominal trace impedance.

The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below. A matched resistor must be used for each group:

- TESTHI[1:0]
- TESTHI[7:2]
- TESTHI10 cannot be grouped with other TESTHI signals

Terminating multiple TESTHI pins together with a single pull-up resistor is not recommended for designs supporting boundary scan for proper Boundary Scan testing of the TESTHI signals. For optimum noise margin, all pull-up resistor values used for TESTHI[10,7:0] lands should have a resistance value within \pm 20% of the impedance of the board transmission line traces. For example, if the nominal trace impedance is 50 $\Omega_{\rm r}$ then a value between 40 Ω and 60 Ω should be used.

2.5 Power Segment Identifier (PSID)

Power Segment Identifier (PSID) is a mechanism to prevent booting under mismatched power requirement situations. The PSID mechanism enables BIOS to detect if the processor in use requires more power than the platform voltage regulator (VR) is capable of supplying. For example, a 130 W TDP processor installed in a board with a 65 W or 95 W TDP capable VR may draw too much power and cause a potential VR issue.

2.6 Voltage and Current Specification

2.6.1 Absolute Maximum and Minimum Ratings

Table 2-2 specifies absolute maximum and minimum ratings only and lie outside the functional limits of the processor. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 2-2. Absolute Maximum and Minimum Ratings

Symbol	Parameter	Min	Max	Unit	Notes ^{1, 2}
V _{CC}	Core voltage with respect to V _{SS}	-0.3	1.45	V	-
V _{TT}	FSB termination voltage with respect to V _{SS}	-0.3	1.45	V	-
T _{CASE}	Processor case temperature	See Section 5	See Section 5	°C	-
T _{STORAGE}	Processor storage temperature	-40	85	°C	3, 4, 5

NOTES:

- For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.
- 2. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.
- 3. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, refer to the processor case temperature specifications.
- 4. This rating applies to the processor and does not include any tray or packaging.
- 5. Failure to adhere to this specification can affect the long term reliability of the processor.

2.6.2 DC Voltage and Current Specification

Table 2-3. Voltage and Current Specifications

Symbol	Pa	rameter	Min	Тур	Max	Unit	Notes ^{2, 10}
VID Range	VID		0.8500	-	1.3625	V	1
V _{CC} Core	Processor Number QX9650	V _{CC} for 775_VR_CONFIG_05B: 3.00 GHz (12 MB Cache)		Table 2 igure 2-		V	3, 4, 5
V _{CC_BOOT}	Default V _{CC} voltage	for initial power up	-	1.10	-	V	
V _{CCPLL}	PLL V _{CC}		- 5%	1.50	+ 5%		
I _{CC}	Processor Number QX9650	I _{CC} for 775_VR_CONFIG_05B: 3.00 GHz (12 MB Cache)	_	_	125	А	6
V _{TT}	FSB termination vol (DC + AC specification)	· ·	1.045	1.10	1.155	V	7, 8
VTT_OUT_LEFT and VTT_OUT_RIGHT I _{CC}	DC Current that ma VTT_OUT_LEFT and	y be drawn from VTT_OUT_RIGHT per land	_	_	580	mA	
Iπ	I_{CC} for V_{TT} supply be I_{CC} for V_{TT} supply as		_	_	8.0 7.0	А	9
I _{CC_VCCPLL}	I _{CC} for PLL land		_	_	260	mA	
I _{CC_GTLREF}	I _{CC} for GTLREF		_	_	200	μΑ	

NOTES:

- 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep® Technology, or Extended HALT State).
- 2. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date.
- 3. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.3 and Table 2-1 for more information.
- 4. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 M Ω minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.
- Refer to Table 2-4 and Figure 2-1 for the minimum, typical, and maximum V_{CC} allowed for a given current. The processor should not be subjected to any V_{CC} and I_{CC} combination wherein V_{CC} exceeds V_{CC MAX} for a given current.
- 6. I_{CC_MAX} specification is based on V_{CC_MAX} loadline. Refer to Figure 2-1 for details.
- 7. V_{TT} must be provided via a separate voltage source and not be connected to V_{CC} . This specification is measured at the land.
- 8. Baseboard bandwidth is limited to 20 MHz.
- 9. This is the maximum total current drawn from the V_{TT} plane by only the processor. This specification does not include the current coming from on-board termination (R_{TT}), through the signal line. Refer to the Voltage Regulator Design Guide to determine the total I_{TT} drawn by the system. This parameter is based on design characterization and is not tested.
- 10. Adherence to the voltage specifications for the processor are required to ensure reliable processor operation.

Table 2-4. V_{CC} Static and Transient Tolerance

	Voltage Deviation from VID Setting (V) 1, 2, 3, 4						
I _{CC} (A)	Maximum Voltage 1.30 mΩ	Typical Voltage 1.38 m Ω	Minimum Voltage 1.45 mΩ				
0	0.000	-0.019	-0.038				
5	-0.007	-0.026	-0.045				
10	-0.013	-0.033	-0.053				
15	-0.020	-0.040	-0.060				
20	-0.026	-0.047	-0.067				
25	-0.033	-0.053	-0.074				
30	-0.039	-0.060	-0.082				
35	-0.046	-0.067	-0.089				
40	-0.052	-0.074	-0.096				
45	-0.059	-0.081	-0.103				
50	-0.065	-0.088	-0.111				
55	-0.072	-0.095	-0.118				
60	-0.078	-0.102	-0.125				
65	-0.085	-0.108	-0.132				
70	-0.091	-0.115	-0.140				
75	-0.098	-0.122	-0.147				
80	-0.101	-0.126	-0.151				
85	-0.111	-0.136	-0.161				
90	-0.117	-0.143	-0.169				
95	-0.124	-0.150	-0.176				
100	-0.130	-0.157	-0.183				
105	-0.137	-0.163	-0.190				
110	-0.143	-0.170	-0.198				
115	-0.150	-0.177	-0.205				
120	-0.156	-0.184	-0.212				
125	-0.163	-0.191	-0.219				

- 1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.
- 2. This table is intended to aid in reading discrete points on Figure 2-1.
- 3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.
- 4. Adherence to this loadline specification is required to ensure reliable processor operation.

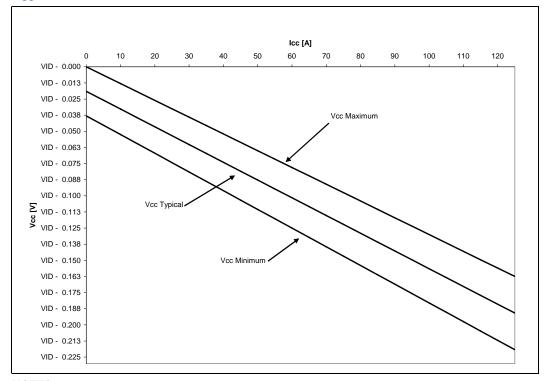


Figure 2-1. V_{CC} Static and Transient Tolerance

- 1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.
- 2. This loadline specification shows the deviation from the VID set point.
- 3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.

2.6.3 V_{CC} Overshoot

The processor can tolerate short transient overshoot events where V_{CC} exceeds the VID voltage when transitioning from a high to low current load condition. This overshoot cannot exceed VID + V_{OS_MAX} (V_{OS_MAX} is the maximum allowable overshoot voltage). The time duration of the overshoot event must not exceed T_{OS_MAX} (T_{OS_MAX} is the maximum allowable time duration above VID). These specifications apply to the processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.

Table 2-5. V_{CC} Overshoot Specifications

Symbol	Parameter	Min	Max	Unit	Figure	Notes
V _{OS_MAX}	Magnitude of V _{CC} overshoot above VID	_	50	mV	2-2	1
T _{OS_MAX}	Time duration of V _{CC} overshoot above VID	_	25	μs	2-2	1

NOTES:

1. Adherence to these specifications is required to ensure reliable processor operation.

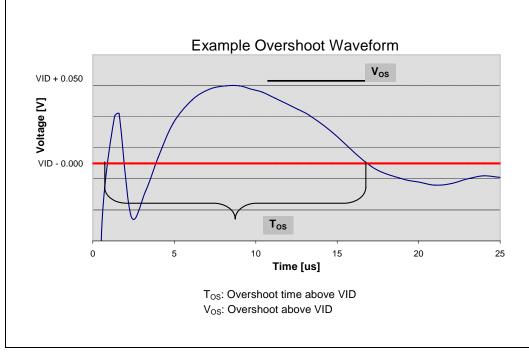


Figure 2-2. V_{CC} Overshoot Example Waveform

- V_{OS} is measured overshoot voltage.
- 2. T_{OS} is measured time duration above VID.

2.6.4 Die Voltage Validation

Overshoot events on processor must meet the specifications in Table 2-5 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot must be taken with a bandwidth limited oscilloscope set to a greater than or equal to 100 MHz bandwidth limit.

2.7 Signaling Specifications

Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling technology. This technology provides improved noise margins and reduced ringing through low voltage swings and controlled edge rates. Platforms implement a termination voltage level for GTL+ signals defined as V_{TT} . Because platforms implement separate power planes for each processor (and chipset), separate V_{CC} and V_{TT} supplies are necessary. This configuration allows for improved noise tolerance as processor frequency increases. Speed enhancements to data and address busses have caused signal integrity considerations and platform design methods to become even more critical than with previous processor families.

The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the motherboard (see Table 2-13 for GTLREF specifications). Termination resistors (R_{TT}) for GTL+ signals are provided on the processor silicon and are terminated to V_{TT} . Intel chipsets will also provide on-die termination; thus, eliminating the need to terminate the bus on the motherboard for most GTL+ signals.

2.7.1 FSB Signal Groups

The front side bus signals have been combined into groups by buffer type. GTL+ input signals have differential input buffers, which use GTLREF[3:0] as a reference level. In this document, the term "GTL+ Input" refers to the GTL+ input group as well as the GTL+ I/O group when receiving. Similarly, "GTL+ Output" refers to the GTL+ output group as well as the GTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependent upon the rising edge of BCLKO (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLKO. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 2-6 identifies which signals are common clock, source synchronous, and asynchronous.

Table 2-6. FSB Signal Groups

Signal Group	Туре	Signals ¹		
GTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#		
GTL+ Common Clock I/O	Synchronous to BCLK[1:0]	ADS#, BNR#, BPM[5:0]#, BPMb[3:0]#, BRO# DRDY#, HIT#, HITM#, LOCK#	^{∤3} , DBSY#,	
		Signals Associated St	robe	
		REQ[4:0]#, A[16:3]# ³ ADSTB0#		
GTL+ Source	Synchronous to	A[35:17]# ³ ADSTB1#		
Synchronous I/O	assoc. strobe	D[15:0]#, DBIO# DSTBPO#, DSTB	NO#	
		D[31:16]#, DBI1# DSTBP1#, DSTB	N1#	
		D[47:32]#, DBI2# DSTBP2#, DSTB	N2#	
		D[63:48]#, DBI3# DSTBP3#, DSTB	N3#	
GTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#		
CMOS		A20M#, DPSLP#, DPRSTP#, IGNNE#, INIT#, INTR, LINT1/NMI, SMI# ³ , STPCLK#, PWRGOCTCK, TDI, TDI_M, TMS, TRST#, BSEL[2:0], VI	D, SLP#,	
Open Drain Output		FERR#/PBE#, IERR#, THERMTRIP#, TDO, TD	O_M	
Open Drain Input/Output		PROCHOT# ⁴		
FSB Clock	Clock	BCLK[1:0], ITP_CLK[1:0] ²		
Power/Other		VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA, GTLREF[3:0], COMP[8,3:0], RESERVED, TESTHI[10,7:0], VCC_SENSE, VCC_MB_REGULATION, VSS_SENSE, VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT, VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]		

NOTES:

Refer to Section 4.2 for signal descriptions.

- 2. In processor systems where no debug port is implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.
- 3. The value of these signals during the active-to-inactive edge of RESET# defines the processor configuration options. See Section 6.1 for details.
- 4. PROCHOT# signal type is open drain output and CMOS input.

Table 2-7. Signal Characteristics

	T
Signals with R _{TT}	Signals with No R _{TT}
A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#, HITM#, LOCK#, PROCHOT#, REQ[4:0]#, RS[2:0]#, TRDY#	A20M#, BCLK[1:0], BSEL[2:0], COMP[8,3:0], FERR#/PBE#, IERR#, IGNNE#, INIT#, ITP_CLK[1:0], LINTO/INTR, LINT1/ NMI, MSID[1:0], PWRGOOD, RESET#, SMI#, STPCLK#, TDO, TDO_M, TESTHI[10,7:0], THERMTRIP#, VID[6:0], GTLREF[3:0], TCK, TDI, TDI_M, TMS, TRST#, VTT_SEL
Open Drain Signals ¹	
THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#, BPMb[3:0]#, BRO#, TDO, TDO_M, FCx	

NOTES:

1. Signals that do not have R_{TT}, nor are actively driven to their high-voltage level.

Table 2-8. Signal Reference Voltages

GTLREF	V _{TT} /2
BPM[5:0]#, BPMb[3:0]#, RESET#, BNR#, HIT#, HITM#, BRO#, A[35:0]#, ADS#, ADSTB[1:0]#, BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#, TRDY#	A20M#, LINTO/INTR, LINT1/NMI, IGNNE#, INIT#, PROCHOT#, PWRGOOD ¹ , SMI#, STPCLK#, TCK ¹ , TDI ¹ , TDI_M ¹ , TMS ¹ , TRST# ¹

NOTE:

1. See Table 2-10 for more information.

2.7.2 CMOS and Open Drain Signals

Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS input buffers. All of the CMOS and Open Drain signals are required to be asserted/ deasserted for at least eight BCLKs in order for the processor to recognize the proper signal state. See Section 2.7.3 for the DC specifications. See Section 6.2 for additional timing requirements for entering and leaving the low power states.

2.7.3 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless otherwise stated. All specifications apply to all frequencies and cache sizes unless otherwise stated.

Table 2-9. GTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
V _{IL}	Input Low Voltage	-0.10	GTLREF – 0.10	V	2, 5
V _{IH}	Input High Voltage	GTLREF + 0.10	V _{TT} + 0.10	V	3, 4, 5
V _{OH}	Output High Voltage	V _{TT} – 0.10	V _{TT}	V	4, 5
I _{OL}	Output Low Current	N/A	V _{TT_MAX} / [(R _{TT_MIN}) + (2 * R _{ON_MIN})]	Α	-
I _{LI}	Input Leakage Current	N/A	± 100	μΑ	6
I _{LO}	Output Leakage Current	N/A	± 100	μΑ	7
R _{ON}	Buffer On Resistance	7.5	11	Ω	

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. V_{IL} is defined as the voltage range at a receiving agent that will be interpreted as a logical low value
- 3. V_{IH} is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.
- 4. V_{IH} and V_{OH} may experience excursions above V_{TT} .
- 5. The V_{TT} referred to in these specifications is the instantaneous V_{TT} .
- 6. Leakage to V_{SS} with land held at V_{TT} .
- 7. Leakage to V_{TT} with land held at 300 mV.

Table 2-10. Open Drain and TAP Output Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
V _{OL}	Output Low Voltage	0	0.20	V	-
I _{OL}	Output Low Current	16	50	mA	2
I _{LO}	Output Leakage Current	N/A	± 200	μΑ	3

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Measured at V_{TT} * 0.2V.
- 3. For Vin between 0 and V_{OH}.

Table 2-11. CMOS Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
V _{IL}	Input Low Voltage	-0.10	V _{TT} * 0.30	V	3, 6
V _{IH}	Input High Voltage	V _{TT} * 0.70	V _{TT} + 0.10	V	4, 5, 6
V _{OL}	Output Low Voltage	-0.10	V _{TT} * 0.10	V	6
V _{OH}	Output High Voltage	0.90 * V _{TT}	V _{TT} + 0.10	V	2, 5, 6
I _{OL}	Output Low Current	V _{TT} * 0.10 / 67	V _{TT} * 0.10 / 27	Α	6, 7
I _{OH}	Output Low Current	V _{TT} * 0.10 / 67	V _{TT} * 0.10 / 27	Α	6, 7
ILI	Input Leakage Current	N/A	± 100	μΑ	8
I _{LO}	Output Leakage Current	N/A	± 100	μΑ	9

- Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. All outputs are open drain.
- 3. $V_{\rm IL}$ is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.
- V_{IH} is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.
- 5. V_{IH} and V_{OH} may experience excursions above V_{TT} .
- 6. The V_{TT} referred to in these specifications refers to instantaneous V_{TT} .
- 7. I_{OL} is measured at 0.10 * $V_{TT.}$ I_{OH} is measured at 0.90 * $V_{TT.}$
- 8. Leakage to V_{SS} with land held at V_{TT} .
- 9. Leakage to V_{TT} with land held at 300 mV.

2.7.3.1 Platform Environment Control Interface (PECI) DC Specifications

PECI is an Intel proprietary one-wire interface that provides a communication channel between Intel processors, chipsets, and external thermal monitoring devices. The processor contains Digital Thermal Sensors (DTS) distributed throughout die. These sensors are implemented as analog-to-digital converters calibrated at the factory for reasonable accuracy to provide a digital representation of relative processor temperature. PECI provides an interface to relay the highest DTS temperature within a die to external management devices for thermal/fan speed control. More detailed information may be found in the *Platform Environment Control Interface (PECI) Specification*.

Table 2-12. PECI DC Electrical Limits (Sheet 1 of 2)

Symbol	Definition and Conditions	Min	Max	Units	Notes ¹
V _{in}	Input Voltage Range	-0.15	V _{TT}	V	
V _{hysteresis}	Hysteresis	0.1 * V _{TT}	_	V	2
V _n	Negative-edge threshold voltage	0.275 * V _{TT}	0.500 * V _{TT}	V	
V _p	Positive-edge threshold voltage	0.550 * V _{TT}	0.725 * V _{TT}	V	
I _{source}	High level output source $(V_{OH} = 0.75 * V_{TT})$	-6.0	N/A	mA	
I _{sink}	Low level output sink $(V_{OL} = 0.25 * V_{TT})$	0.5	1.0	mA	
I _{leak+}	High impedance state leakage to V_{TT}	N/A	50	μΑ	3

Table 2-12. PECI DC Electrical Limits (Sheet 2 of 2)

Symbol	Definition and Conditions	Min	Max	Units	Notes ¹
I _{leak-}	High impedance leakage to GND	N/A	10	μΑ	3
C _{bus}	Bus capacitance per node	_	10	pF	4
V _{noise}	Signal noise immunity above 300 MHz	0.1 * V _{TT}	_	V _{p-p}	

NOTES:

- V_{TT} supplies the PECI interface. PECI behavior does not affect V_{TT} min/max specifications. Refer to Table 2-3 for VTT specifications.
- 2. The leakage specification applies to powered devices on the PECI bus.
- 3. The input buffers use a Schmitt-triggered input design for improved noise immunity.
- 4. One node is counted for each client and one node for the system host. Extended trace lengths might appear as additional nodes.

2.7.3.2 GTL+ Front Side Bus Specifications

In most cases, termination resistors are not required as these are integrated into the processor silicon. See Table 2-7 for details on which GTL+ signals do not include on-die termination.

Valid high and low levels are determined by the input buffers by comparing with a reference voltage called GTLREF. Table 2-13 lists the GTLREF specifications. The GTL+ reference voltage (GTLREF) should be generated on the system board using high precision voltage divider circuits.

Table 2-13. GTL+ Bus Resistance Definitions

Symbol	Parameter	Min	Тур	Max	Units	Notes ¹
GTLREF_PU	GTLREF pull up resistor	57.6 * 0.99	57.6	57.6 * 1.01	Ω	2
GTLREF_PD	GTLREF pull down resistor	100 * 0.99	100	100 * 1.01	Ω	2
R _{TT}	Termination Resistance	45	50	55	Ω	3
COMP[3:0]	COMP Resistance	49.40	49.90	50.40	Ω	4
COMP8	COMP Resistance	24.65	24.90	25.15	Ω	4

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. GTLREF is to be generated from VTT by a voltage divider of 1% resistors. If an Variable GTLREF circuit is used on the board the GTLREF lands connected to the Variable GTLREF circuit may require different resistor values. Each GTLREF land must be connected.
- 3. R_{TT} is the on-die termination resistance measured at $V_{TT}/3$ of the GTL+ output driver.
- 4. COMP resistance must be provided on the system board with 1% resistors. COMP[3:0] and COMP8 resistors are to V_{SS} .

2.8 Clock Specifications

2.8.1 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the processor core frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its default ratio during manufacturing. The processor supports Half Ratios between 7.5 and 13.5 (see Table 2-14 for the processor supported ratios).

The processor uses a differential clocking implementation. For more information on the processor clocking, contact your Intel field representative.

Table 2-14. Core Frequency to FSB Multiplier Configuration

Multiplication of System Core Frequency to FSB Frequency	Core Frequency (333 MHz BCLK/ 1333 MHz FSB)	Notes ^{1, 2}
1/6	2 GHz	-
1/7	2.33 GHz	-
1/7.5	2.50 GHz	-
1/8	2.66 GHz	-
1/8.5	2.83 GHz	-
1/9	3 GHz	-
1/9.5	3.16 GHz	-
1/10	3.33 GHz	-
1/10.5	3.50 GHz	-
1/11	3.66 GHz	-
1/11.5	3.83 GHz	-
1/12	4 GHz	-
1/12.5	4.16 GHz	-
1/13	4.33 GHz	-
1/13.5	4.50 GHz	-
1/14	4.66 GHz	-
1/15	5 GHz	-

NOTES:

- 1. Individual processors operate only at or below the rated frequency.
- 2. Listed frequencies are not necessarily committed production frequencies.

2.8.2 FSB Frequency Select Signals (BSEL[2:0])

The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). Table 2-15 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset, and clock synthesizer. All agents must operate at the same frequency.

The processor operates at a 1333 MHz FSB frequency (selected by a 333 MHz BCLK[1:0] frequency). Individual processors will only operate at their specified FSB frequency.

For more information about these signals, refer to Section 4.2.

Table 2-15. BSEL[2:0] Frequency Table for BCLK[1:0]

BSEL2	BSEL1	BSELO	FSB Frequency
L	L	L	RESERVED
L	L	Н	RESERVED
L,	Н	Н	RESERVED
L,	Н	L	RESERVED
Н	Н	L	RESERVED
Н	Н	Н	RESERVED
Н	L	Н	RESERVED
Н	L	L	333 MHz

2.8.3 Phase Lock Loop (PLL) and Filter

An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is used for the PLL. Refer to Table 2-3 for DC specifications.

2.8.4 BCLK[1:0] Specifications

Table 2-16. Front Side Bus Differential BCLK Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Figure	Notes ¹
V _L	Input Low Voltage	-0.30	N/A	N/A	V	2-3	3
V _H	Input High Voltage	N/A	N/A	1.15	V	2-3	3
V _{CROSS(abs)}	Absolute Crossing Point	0.300	N/A	0.550	V	2-3	2
ΔV_{CROSS}	Range of Crossing Points	N/A	N/A	0.140	V	2-3	-
V _{OS}	Overshoot	N/A	N/A	1.4	V	2-3	4
V _{US}	Undershoot	-0.300	N/A	N/A	V	2-3	4
V _{SWING}	Differential Output Swing	0.300	N/A	N/A	V	2-4	5

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 equals the falling edge of BCLK1.
- 3. "Steady state" voltage, not including overshoot or undershoot.
- 4. Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined as the absolute value of the minimum voltage.
- 5. Measurement taken from differential waveform.

Table 2-17. FSB Differential Clock Specifications (1333 MHz FSB)

T# Parameter	Min	Nom	Max	Unit	Figure	Notes ¹
BCLK[1:0] Frequency	331.633	_	333.367	MHz	-	6
T1: BCLK[1:0] Period	2.99970	_	3.01538	ns	2-3	2
T2: BCLK[1:0] Period Stability	_	_	150	ps	2-3	3
T5: BCLK[1:0] Rise and Fall Slew Rate	2.5	_	8	V/ns	2-4	4
Slew Rate Matching	N/A	N/A	20	%	-	5

- Unless otherwise noted, all specifications in this table apply to all processor core frequencies based on a 333 MHz BCLK[1:0].
- 2. The period specified here is the average period. A given period may vary from this specification as governed by the period stability specification (T2). Min period specification is based on -300 PPM deviation from a 3 ns period. Max period specification is based on the summation of +300 PPM deviation from a 3 ns period and a +0.5% maximum variance due to spread spectrum clocking.
- 3. In this context, period stability is defined as the worst case timing difference between successive crossover voltages. In other words, the largest absolute difference between adjacent clock periods must be less than the period stability.
- 4. Slew rate is measured through the VSWING voltage range centered about differential zero. Measurement taken from differential waveform.
- 5. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75 mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
- 6. Duty Cycle (High time/Period) must be between 40% and 60%.

Figure 2-3. Differential Clock Waveform

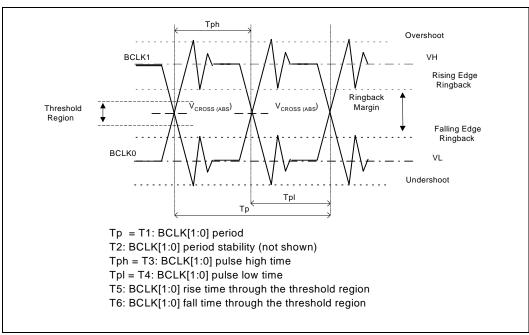
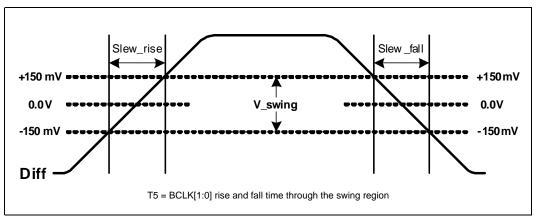
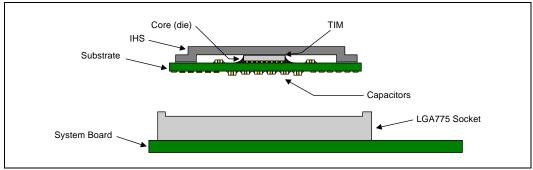



Figure 2-4. Measurement Points for Differential Clock Waveforms

§


3 Package Mechanical Specifications

The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA6) package that interfaces with the motherboard via an LGA775 socket. The package consists of a processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surface for processor component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor package components and how they are assembled together. Refer to the *LGA775 Socket Mechanical Design Guide* for complete details on the LGA775 socket.

The package components shown in Figure 3-1 include the following:

- Integrated Heat Spreader (IHS)
- Thermal Interface Material (TIM)
- · Processor core (die)
- · Package substrate
- · Capacitors

Figure 3-1. Processor Package Assembly Sketch

NOTE:

Socket and motherboard are included for reference and are not part of processor package.

3.1 Package Mechanical Drawing

The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The drawings include dimensions necessary to design a thermal solution for the processor. These dimensions include:

- Package reference with tolerances (total height, length, width, etc.)
- IHS parallelism and tilt
- · Land dimensions
- Top-side and back-side component keep-out dimensions
- · Reference datums
- · All drawing dimensions are in mm [in].
- Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the cooling solution is available in the processor Thermal and Mechanical Design Guidelines.

Figure 3-2. Processor Package Drawing (Sheet 1 of 3)

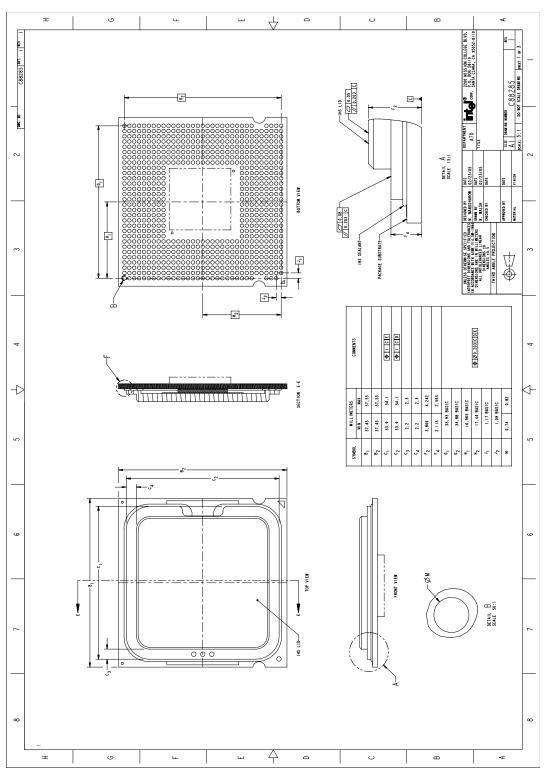


Figure 3-3. Processor Package Drawing (Sheet 2 of 3)

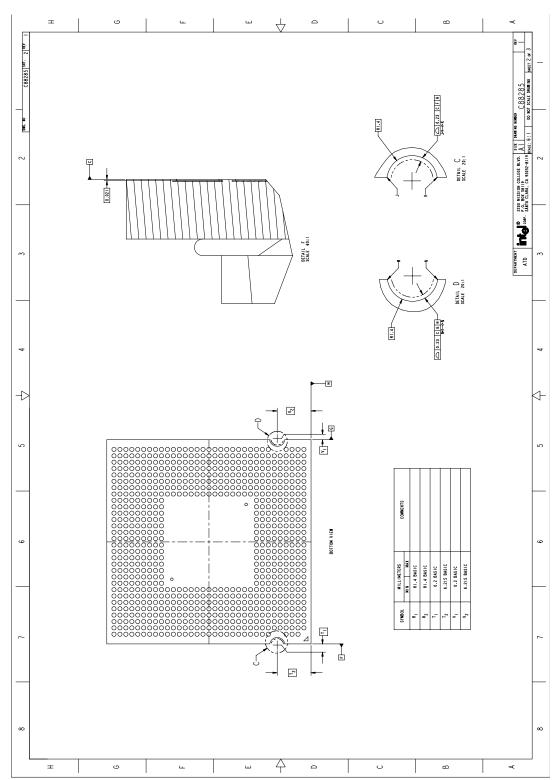
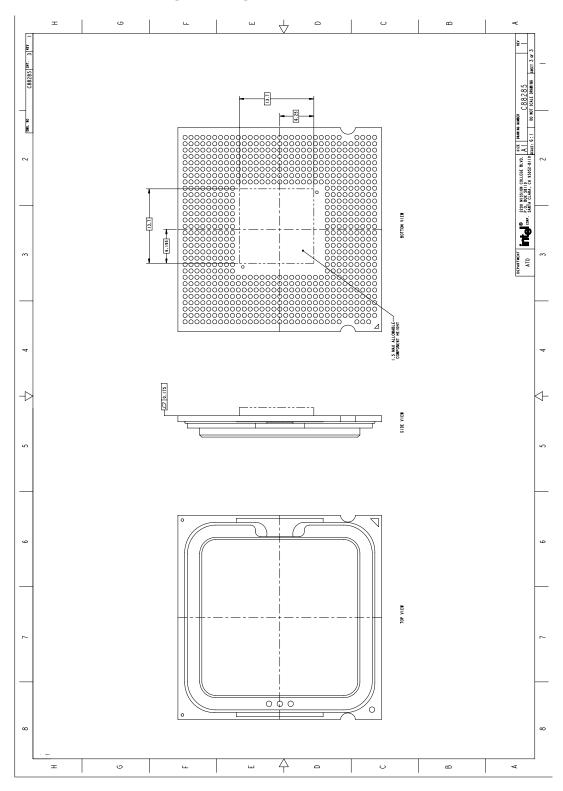



Figure 3-4. Processor Package Drawing (Sheet 3 of 3)

3.2 Processor Component Keep-Out Zones

The processor may contain components on the substrate that define component keepout zone requirements. A thermal and mechanical solution design must not intrude into the required keep-out zones. Decoupling capacitors are typically mounted to either the topside or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keepout zones. The location and quantity of package capacitors may change due to manufacturing efficiencies but will remain within the component keep-in.

3.3 Package Loading Specifications

Table 3-1 provides dynamic and static load specifications for the processor package. These mechanical maximum load limits should not be exceeded during heatsink assembly, shipping conditions, or standard use condition. Also, any mechanical system or component testing should not exceed the maximum limits. The processor package substrate should not be used as a mechanical reference or load-bearing surface for thermal and mechanical solution. The minimum loading specification must be maintained by any thermal and mechanical solutions.

Table 3-1. Processor Loading Specifications

Parameter	Minimum	Maximum	Notes
Static	80 N [17 lbf]	311 N [70 lbf]	1, 2, 3
Dynamic	_	756 N [170 lbf]	1, 3, 4

NOTES:

- These specifications apply to uniform compressive loading in a direction normal to the processor IHS.
- 2. This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the minimum specified load on the processor package.
- 3. These specifications are based on limited testing for design characterization. Loading limits are for the package only and do not include the limits of the processor socket.
- 4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement.

3.4 Package Handling Guidelines

Table 3-2 includes a list of guidelines on package handling in terms of recommended maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal.

Table 3-2. Package Handling Guidelines

Parameter	Maximum Recommended	Notes
Shear	311 N [70 lbf]	1, 4
Tensile	111 N [25 lbf]	2, 4
Torque	3.95 N-m [35 lbf-in]	3, 4

NOTES:

- A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.
- A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.
- 3. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top surface.
- 4. These guidelines are based on limited testing for design characterization.

3.5 Package Insertion Specifications

The processor can be inserted into and removed from a LGA775 socket 15 times. The socket should meet the LGA775 requirements detailed in the *LGA775 Socket Mechanical Design Guide*.

3.6 Processor Mass Specification

The typical mass of the processor is 21.5 g [0.76 oz]. This mass [weight] includes all the components that are included in the package.

3.7 Processor Materials

Table 3-3 lists some of the package components and associated materials.

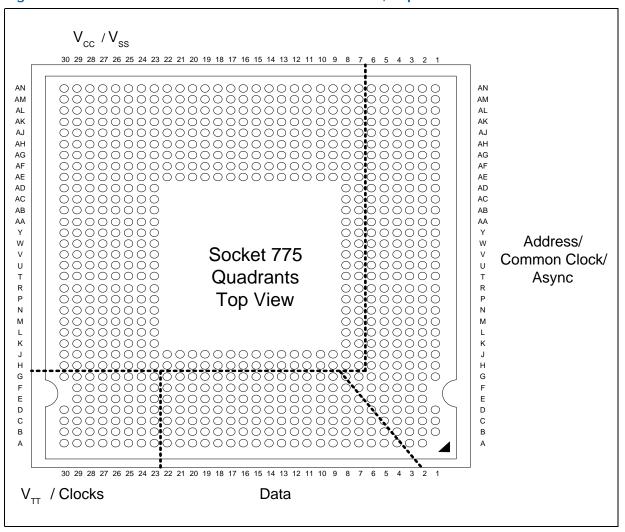
Table 3-3. Processor Materials

Component	Material		
Integrated Heat Spreader (IHS)	Nickel Plated Copper		
Substrate	Fiber Reinforced Resin		
Substrate Lands	Gold Plated Copper		

3.8 Processor Markings

Figure 3-5 shows the topside markings on the processor. This diagram is to aid in the identification of the processor.

Figure 3-5. Processor Top-Side Markings Example



3.9 Processor Land Coordinates

Figure 3-6 shows the top view of the processor land coordinates. The coordinates are referred to throughout the document to identify processor lands.

Figure 3-6. Processor Land Coordinates and Quadrants, Top View

Datasheet 37

8

4 Land Listing and Signal Descriptions

This chapter provides the processor land assignment and signal descriptions.

4.1 Processor Land Assignments

This section contains the land listings for the processor. The land-out footprint is shown in Figure 4-1 and Figure 4-2. These figures represent the land-out arranged by land number and they show the physical location of each signal on the package land array (top view). Table 4-1 is a listing of all processor lands ordered alphabetically by land (signal) name. Table 4-2 is also a listing of all processor lands; the ordering is by land number.

Figure 4-1.land-out Diagram (Top View – Left Side)

3				3												
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15
AN	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	vcc
АМ	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VSS	VCC	vcc	VSS	VCC	VCC	VSS	VSS	VCC
AL	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AK	VSS	VSS	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AJ	VSS	VSS	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
АН	VCC	VCC	VCC	VCC	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AG	VCC	VCC	VCC	VCC	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AF	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AE	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VCC	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AD	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
AC	VCC	VCC	vcc	VCC	VCC	VCC	VCC	VCC								
AB	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
AA	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
Y	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
w	VCC	VCC	vcc	VCC	VCC	VCC	VCC	VCC								
V	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
U	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
T	VCC	VCC	vcc	VCC	VCC	VCC	VCC	VCC								
R	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
Р	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
N	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
М	VCC	VCC	vcc	vcc	vcc	vcc	VCC	VCC								
L	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
K	VCC	VCC	vcc	VCC	VCC	VCC	VCC	VCC								
J	VCC	VCC	vcc	vcc	vcc	vcc	VCC	VCC	vcc	vcc	vcc	vcc	VCC	FC34	FC31	vcc
н	BSEL1	FC15	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS	VSS	FC33	FC32
G	BSEL2	BSEL0	BCLK1	TESTHI4	TESTHI5	TESTHI3	TESTHI6	RESET#	D47#	D44#	DSTBN2#	DSTBP2#	D35#	D36#	D32#	D31#
F		RSVD	BCLK0	VTT_SEL	TESTHI0	TESTHI2	TESTHI7	RSVD	VSS	D43#	D41#	VSS	D38#	D37#	VSS	D30#
E		FC26	VSS	VSS	VSS	VSS	FC10	RSVD	D45#	D42#	VSS	D40#	D39#	VSS	D34#	D33#
D	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VCCPLL	D46#	VSS	D48#	DBI2#	VSS	D49#	RSVD	VSS
С	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VCCIO PLL	VSS	D58#	DBI3#	VSS	D54#	DSTBP3#	VSS	D51#
В	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VSSA	D63#	D59#	VSS	D60#	D57#	VSS	D55#	D53#
Α	VTT	VTT	VTT	VTT	VTT	VTT	FC23	VCCA	D62#	VSS	RSVD	D61#	VSS	D56#	DSTBN3#	VSS
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15

Figure 4-2.land-out Diagram (Top View – Right Side)

14	13	12	11	10	9	8	7	6	5	4	3	2	1	
VCC	VSS	VCC	vcc	VSS	VCC	VCC	VID_SEL ECT	VSS_MB_ REGULATION	VCC_MB_ REGULATION	VSS_ SENSE	VCC_ SENSE	VSS	VSS	AN
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VID7	FC40	VID6	VSS	VID2	VID0	VSS	АМ
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VID3	VID1	VID5	VRDSEL	PROCHOT#	FC25	AL
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VSS	FC8	VSS	VID4	ITP_CLK0	VSS	FC24	AK
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VSS	A35#	A34#	VSS	ITP_CLK1	BPM0#	BPM1#	AJ
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	A33#	A32#	VSS	RSVD	VSS	АН
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VSS	A29#	A31#	A30#	BPM5#	BPM3#	TRST#	AG
VCC	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	A27#	A28#	VSS	BPM4#	TDO	AF
VCC	VSS	VCC	VCC	VSS	VCC	SKTOCC#	VSS	RSVD	VSS	RSVD	FC18	VSS	TCK	AE
						VCC	VSS	A22#	ADSTB1#	VSS	FC36	BPM2#	TDI	AD
						VCC	VSS	VSS	A25#	RSVD	VSS	DBR#	TMS	AC
						VCC	VSS	A17#	A24#	A26#	FC37	IERR#	VSS	AB
						vcc	VSS	VSS	A23#	A21#	VSS	FC39	VTT_OUT_ RIGHT	АА
						vcc	VSS	A19#	VSS	A20#	FC17	VSS	FC0/BOOT- SELECT	Y
						vcc	VSS	A18#	A16#	VSS	TESTHI1	TDI_M	MSID0	w
						VCC	VSS	VSS	A14#	A15#	VSS	RSVD	MSID1	٧
						vcc	VSS	A10#	A12#	A13#	FC30	FC29	TDO_M	U
						vcc	VSS	VSS	A9#	A11#	VSS	DPRSTP#	COMP1	Т
						VCC	VSS	ADSTB0#	VSS	A8#	FERR#/ PBE#	VSS	COMP3	R
						VCC	VSS	A4#	RSVD	VSS	INIT#	SMI#	DPSLP#	Р
						VCC	VSS	VSS	RSVD	RSVD	VSS	IGNNE#	PWRGOOD	N
						VCC	VSS	REQ2#	A5#	A7#	STPCLK#	THER- MTRIP#	VSS	М
						VCC	VSS	VSS	A3#	A6#	VSS	SLP#	LINT1	L
						VCC	VSS	REQ3#	VSS	REQ0#	A20M#	VSS	LINT0	к
vcc	VCC	VCC	VCC	VCC	VCC	VCC	VSS	REQ4#	REQ1#	VSS	FC22	FC3	VTT_OUT_ LEFT	J
VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	TESTHI10	FC35	VSS	GTLREF1	GTLREF0	н
D29#	D27#	DSTBN1#	DBI1#	GTLREF3	D16#	BPRI#	DEFER#	RSVD	PECI	BPMb2#	BPMb3#	COMP2	BPMb0#	G
D28#	VSS	D24#	D23#	VSS	D18#	D17#	VSS	FC21	RS1#	VSS	BR0#	GTLREF2		F
VSS	D26#	DSTBP1#	VSS	D21#	D19#	VSS	RSVD	RSVD	FC20	HITM#	TRDY#	VSS		E
RSVD	D25#	VSS	D15#	D22#	VSS	D12#	D20#	VSS	VSS	HIT#	VSS	ADS#	RSVD	D
D52#	VSS	D14#	D11#	VSS	BPMb1#	DSTBN0#	VSS	D3#	D1#	VSS	LOCK#	BNR#	DRDY#	С
VSS	COMP8	D13#	VSS	D10#	DSTBP0#	VSS	D6#	D5#	VSS	D0#	RS0#	DBSY#	VSS	В
D50#	COMP0	VSS	D9#	D8#	VSS	DBI0#	D7#	VSS	D4#	D2#	RS2#	VSS		Α
14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # Direction **Type** A3# L5 Input/Output Source Synch A4# Р6 Source Synch Input/Output A5# М5 Source Synch Input/Output A6# L4 Source Synch Input/Output A7# M4 Source Synch Input/Output A8# R4 Source Synch Input/Output T5 Input/Output Α9# Source Synch A10# U6 Input/Output Source Synch A11# Τ4 Input/Output Source Synch A12# U5 Source Synch Input/Output Input/Output A13# U4 Source Synch V5 Source Synch A14# Input/Output ٧4 A15# Source Synch Input/Output A16# W5 Source Synch Input/Output A17# AB6 Source Synch Input/Output A18# W6 Source Synch Input/Output A19# Υ6 Source Synch Input/Output A20# Υ4 Source Synch Input/Output A21# AA4 Input/Output Source Synch AD6 A22# Input/Output Source Synch AA5 Input/Output A23# Source Synch A24# AB5 Source Synch Input/Output A25# AC5 Source Synch Input/Output A26# AB4 Source Synch Input/Output Input/Output A27# AF5 Source Synch A28# AF4 Source Synch Input/Output A29# AG6 Source Synch Input/Output A30# AG4 Source Synch Input/Output AG5 Input/Output A31# Source Synch A32# AH4 Input/Output Source Synch A33# AH5 Input/Output Source Synch A34# AJ5 Source Synch Input/Output A35# AJ6 Input/Output Source Synch A20M# Asynch CMOS Input ADS# D2 Common Clock Input/Output ADSTB0# R6 Input/Output Source Synch ADSTB1# AD5 Source Synch Input/Output **BCLKO** F28 Clock Input BCLK1 G28 Clock Input BNR# C2 Common Clock Input/Output BPM0# AJ2 Input/Output Common Clock BPM1# AJ1 Common Clock Input/Output BPM2# AD2 Input/Output Common Clock BPM3# AG2 Input/Output Common Clock BPM4# Input/Output AF2 Common Clock BPM5# AG3 Common Clock Input/Output

Table 4-1. Alphabetical Land Assignments

_	7133	igilificitis	1
Land Name	Land #	Signal Buffer Type	Direction
BPMb0#	G1	Common Clock	Input/Output
BPMb1#	C9	Common Clock	Input/Output
BPMb2#	G4	Common Clock	Input/Output
BPMb3#	G3	Common Clock	Input/Output
BPRI#	G8	Common Clock	Input
BR0#	F3	Common Clock	Input/Output
BSEL0	G29	Asynch CMOS	Output
BSEL1	H30	Asynch CMOS	Output
BSEL2	G30	Asynch CMOS	Output
COMP0	A13	Power/Other	Input
COMP1	T1	Power/Other	Input
COMP2	G2	Power/Other	Input
COMP3	R1	Power/Other	Input
COMP8	B13	Power/Other	Input
D0#	B4	Source Synch	Input/Output
D1#	C5	Source Synch	Input/Output
D2#	A4	Source Synch	Input/Output
D3#	C6	Source Synch	Input/Output
D4#	A 5	Source Synch	Input/Output
D5#	В6	Source Synch	Input/Output
D6#	B7	Source Synch	Input/Output
D7#	A7	Source Synch	Input/Output
D8#	A10	Source Synch	Input/Output
D9#	A11	Source Synch	Input/Output
D10#	B10	Source Synch	Input/Output
D11#	C11	Source Synch	Input/Output
D12#	D8	Source Synch	Input/Output
D13#	B12	Source Synch	Input/Output
D14#	C12	Source Synch	Input/Output
D15#	D11	Source Synch	Input/Output
D16#	G9	Source Synch	Input/Output
D17#	F8	Source Synch	Input/Output
D18#	F9	Source Synch	Input/Output
D19#	E9	Source Synch	Input/Output
D20#	D7	Source Synch	Input/Output
D21#	E10	Source Synch	Input/Output
D22#	D10	Source Synch	Input/Output
D23#	F11	Source Synch	Input/Output
D24#	F12	Source Synch	Input/Output
D25#	D13	Source Synch	Input/Output
D26#	E13	Source Synch	Input/Output
D27#	G13	Source Synch	Input/Output
D28#	F14	Source Synch	Input/Output
D29#	G14	Source Synch	Input/Output
D30#	F15	Source Synch	Input/Output
D31#	G15	Source Synch	Input/Output
<u> </u>	L		

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name **Direction** Land # **Type** D32# G16 Source Synch Input/Output D33# E15 Input/Output Source Synch D34# E16 Source Synch Input/Output D35# G18 Source Synch Input/Output D36# G17 Source Synch Input/Output D37# F17 Input/Output Source Synch D38# F18 Source Synch Input/Output Input/Output D39# E18 Source Synch D40# E19 Input/Output Source Synch D41# F20 Source Synch Input/Output D42# E21 Input/Output Source Synch D43# F21 Input/Output Source Synch D44# G21 Input/Output Source Synch D45# E22 Source Synch Input/Output D46# D22 Input/Output Source Synch D47# G22 Source Synch Input/Output D48# D20 Input/Output Source Synch D49# D17 Source Synch Input/Output D50# A14 Source Synch Input/Output D51# C15 Source Synch Input/Output D52# C14 Source Synch Input/Output D53# B15 Input/Output Source Synch D54# C18 Input/Output Source Synch B16 D55# Source Synch Input/Output D56# A17 Source Synch Input/Output D57# B18 Source Synch Input/Output D58# C21 Source Synch Input/Output D59# B21 Input/Output Source Synch B19 D60# Source Synch Input/Output D61# A19 Source Synch Input/Output D62# A22 Input/Output Source Synch D63# B22 Source Synch Input/Output DBI0# A8 Source Synch Input/Output DBI1# G11 Source Synch Input/Output DBI2# D19 Input/Output Source Synch DBI3# C20 Source Synch Input/Output DBR# AC2 Power/Other Output DBSY# Input/Output B2 Common Clock DEFER# G7 Common Clock Input DPRSTP# Τ2 Asynch CMOS Input DPSLP# P1 Asynch CMOS Input DRDY# C1 Common Clock Input/Output DSTBN0# C8 Source Synch Input/Output DSTBN1# G12 Source Synch Input/Output DSTBN2# G20 Input/Output Source Synch DSTBN3# A16 Input/Output Source Synch

Table 4-1. Alphabetical Land Assignments

Land Name Land # Signal Buffer Type Direction DSTBP0# B9 Source Synch Input/Output DSTBP1# E12 Source Synch Input/Output DSTBP2# G19 Source Synch Input/Output DSTBP3# C17 Source Synch Input/Output FC0/BOOTSELECT Y1 Power/Other Input/Output FC3 J2 Power/Other Input/Output FC3 J2 Power/Other Input/Output FC8 AK6 Power/Other Input/Output FC10 E24 Power/Other Input/Output FC15 H29 Power/Other Input/Output FC16 H29 Power/Other Input/Output FC17 Y3 Power/Other Input/Output FC20 E5 Power/Other Input/Output FC21 F6 Power/Other Input/Output FC22 J3 Power/Other Input/Output FC24 AK1 Power/Other			_	
DSTBP1# E12 Source Synch Input/Output DSTBP2# G19 Source Synch Input/Output DSTBP3# C17 Source Synch Input/Output FC0/BOOTSELECT Y1 Power/Other FC3 J2 Power/Other FC8 AK6 Power/Other FC10 E24 Power/Other FC15 H29 Power/Other FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33	Land Name	Land #	•	Direction
DSTBP2# G19 Source Synch Input/Output DSTBP3# C17 Source Synch Input/Output FC0/BOOTSELECT Y1 Power/Other FC3 J2 Power/Other FC8 AK6 Power/Other FC10 E24 Power/Other FC15 H29 Power/Other FC15 H29 Power/Other FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16	DSTBP0#	В9	Source Synch	Input/Output
DSTBP3# C17 Source Synch Input/Output FC0/BOOTSELECT Y1 Power/Other FC3 J2 Power/Other FC8 AK6 Power/Other FC10 E24 Power/Other FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other	DSTBP1#	E12	Source Synch	Input/Output
FCO/BOOTSELECT Y1	DSTBP2#	G19	Source Synch	Input/Output
BOOTSELECT Y1 Power/Other FC3 J2 Power/Other FC8 AK6 Power/Other FC10 E24 Power/Other FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC36 AD3 Power/Other FC39 AA2	DSTBP3#	C17	Source Synch	Input/Output
FC8 AK6 Power/Other FC10 E24 Power/Other FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output <td< td=""><td></td><td>Y1</td><td>Power/Other</td><td></td></td<>		Y1	Power/Other	
FC10 E24 Power/Other FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output <t< td=""><td>FC3</td><td>J2</td><td>Power/Other</td><td></td></t<>	FC3	J2	Power/Other	
FC15 H29 Power/Other FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC40 AM6 Power/Other FCR##/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input	FC8		Power/Other	
FC17 Y3 Power/Other FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FCR##/PBE# R3 Asynch CMOS Output GTLREF1 H2 Power/Other Input <	FC10	E24	Power/Other	
FC18 AE3 Power/Other FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF1 H2 Power/Other Input GTLREF3 G10 Power/Other	FC15	H29	Power/Other	
FC20 E5 Power/Other FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4	FC17	Y3	Power/Other	
FC21 F6 Power/Other FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4	FC18	AE3	Power/Other	
FC22 J3 Power/Other FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FC40 FC40 AM6 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FC40 FC40 AM6 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other Input GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC20	E5	Power/Other	
FC23 A24 Power/Other FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other Input GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC21	F6	Power/Other	
FC24 AK1 Power/Other FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC40 AM6 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC22	J3	Power/Other	
FC25 AL1 Power/Other FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HITM# E4 Common Clock Input HITM# P3 Asyn	FC23	A24	Power/Other	
FC26 E29 Power/Other FC29 U2 Power/Other FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output HIT# P3 Asynch CMOS Input INIT# P3 Asynch CMOS Input	FC24	AK1	Power/Other	
FC29 FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FER#/PBE# R3 Asynch CMOS GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF3 G10 Power/Other HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output HIT# AB2 Asynch CMOS Output Input GTLREF# AB2 Asynch CMOS Input HIT# D4 Common Clock Input/Output HIT# B4 Common Clock Input/Output IRR# AB2 Asynch CMOS Input INIT# P3 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input Input LINT1 L1 LOCK#	FC25	AL1	Power/Other	
FC30 U3 Power/Other FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FC41 Ay3 Asynch CMOS Output GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input HIT# D4 Common Clock Input/Output HIT# AB2 Asynch CMOS Output INIT# P3 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK1 AJ3 TAP Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 LOCK# C3 Common Clock Input/Output	FC26	E29	Power/Other	
FC31 J16 Power/Other FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FC40 H1 Power/Other Input GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC29	U2	Power/Other	
FC32 H15 Power/Other FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FC41 H2 Power/Other Input GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC30	U3	Power/Other	
FC33 H16 Power/Other FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FCRR#/PBE# R3 Asynch CMOS Output GTLREFO H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC31	J16	Power/Other	
FC34 J17 Power/Other FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FC40 AM6 Power/Other FCRR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC32	H15	Power/Other	
FC35 H4 Power/Other FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# D4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC33	H16	Power/Other	
FC36 AD3 Power/Other FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# B4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input	FC34	J17	Power/Other	
FC37 AB3 Power/Other FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# B4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	FC35	H4	Power/Other	
FC39 AA2 Power/Other FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HITM# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	FC36	AD3	Power/Other	
FC40 AM6 Power/Other FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# B4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	FC37	AB3	Power/Other	
FERR#/PBE# R3 Asynch CMOS Output GTLREF0 H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# B4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	FC39	AA2	Power/Other	
GTLREFO H1 Power/Other Input GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# B4 Common Clock Input/Output HITM# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	FC40	AM6	Power/Other	
GTLREF1 H2 Power/Other Input GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HIT# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input CCS Common Clock Input/Output	FERR#/PBE#	R3	Asynch CMOS	Output
GTLREF2 F2 Power/Other Input GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HITM# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input C3 Common Clock Input/Output	GTLREF0	H1	Power/Other	Input
GTLREF3 G10 Power/Other Input HIT# D4 Common Clock Input/Output HITM# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	GTLREF1	H2	Power/Other	Input
HIT# D4 Common Clock Input/Output HITM# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLKO AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	GTLREF2	F2	Power/Other	Input
HITM# E4 Common Clock Input/Output IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	GTLREF3	G10	Power/Other	Input
IERR# AB2 Asynch CMOS Output IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	HIT#	D4	Common Clock	Input/Output
IGNNE# N2 Asynch CMOS Input INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	HITM#	E4	Common Clock	Input/Output
INIT# P3 Asynch CMOS Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	IERR#	AB2	Asynch CMOS	Output
ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	IGNNE#	N2	Asynch CMOS	Input
ITP_CLK1 AJ3 TAP Input LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	INIT#	Р3	Asynch CMOS	Input
LINTO K1 Asynch CMOS Input LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	ITP_CLK0	AK3	TAP	Input
LINT1 L1 Asynch CMOS Input LOCK# C3 Common Clock Input/Output	ITP_CLK1	AJ3	TAP	Input
LOCK# C3 Common Clock Input/Output	LINTO	K1	Asynch CMOS	Input
	LINT1	L1	Asynch CMOS	Input
MSID0 W1 Power/Other Output	LOCK#	C3	Common Clock	Input/Output
	MSID0	W1	Power/Other	Output

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # Direction **Type** MSID1 V1 Power/Other Output PECI G5 Power/Other Input/Output Input/Output PROCHOT# AL2 Asynch CMOS **PWRGOOD** N1 Power/Other REQ0# K4 Source Synch Input/Output REQ1# J5 Source Synch Input/Output REQ2# M6 Input/Output Source Synch REQ3# Κ6 Input/Output Source Synch REQ4# J6 Input/Output Source Synch RESERVED V2 RESERVED A20 RESERVED AC4 RESERVED AE4 **RESERVED** AE6 RESERVED AH2 RESERVED D1 RESERVED D14 RESERVED D16 RESERVED E23 RESERVED E6 RESERVED E7 RESERVED F23 RESERVED F29 RESERVED G6 **RESERVED** N4 RESERVED N5 RESERVED P5 RESET# G23 Common Clock Input RS0# В3 Common Clock Input RS1# F5 Common Clock Input RS2# АЗ Common Clock Input SKTOCC# AE8 Power/Other Output SLP# 12 Asynch CMOS Input SMI# P2 Asynch CMOS Input STPCLK# М3 Asynch CMOS Input TCK AE1 TAP Input TDI AD1 TAP Input TDI_M W2 Power/Other Input TDO AF1 TAP Output TDO_M U1 TAP Output TESTHI0 F26 Power/Other Input TESTHI1 W3 Power/Other Input TESTHI10 Н5 Power/Other Input TESTH12 F25 Power/Other Input TESTHI3 G25 Power/Other Input TESTHI4 Power/Other G27 Input

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
TESTHI5	G26	Power/Other	Input
TESTHI6	G24	Power/Other	Input
TESTHI7	F24	Power/Other	Input
THERMTRIP#	M2	Asynch CMOS	Output
TMS	AC1	TAP	Input
TRDY#	E3	Common Clock	Input
TRST#	AG1	TAP	Input
VCC	AA8	Power/Other	Прис
VCC	AB8	Power/Other	
VCC	AC23	Power/Other	
VCC	AC23	Power/Other	
VCC	AC25	Power/Other	
VCC	AC26	Power/Other	
VCC	AC27	Power/Other	
VCC	AC28	Power/Other	
VCC	AC29	Power/Other	
VCC	AC30	Power/Other	
VCC	AC8	Power/Other	
VCC	AD23	Power/Other	
VCC	AD24	Power/Other	
VCC	AD25	Power/Other	
VCC	AD26	Power/Other	
VCC	AD27	Power/Other	
VCC	AD28	Power/Other	
VCC	AD29	Power/Other	
VCC	AD30	Power/Other	
VCC	AD8	Power/Other	
VCC	AE11	Power/Other	
VCC	AE12	Power/Other	
VCC	AE14	Power/Other	
VCC	AE15	Power/Other	
VCC	AE18	Power/Other	
VCC	AE19	Power/Other	
VCC	AE21	Power/Other	
VCC	AE22	Power/Other	
VCC	AE23	Power/Other	
VCC	AE9	Power/Other	
VCC	AF11	Power/Other	
VCC	AF12	Power/Other	
VCC	AF14	Power/Other	
VCC	AF15	Power/Other	
VCC	AF18	Power/Other	
VCC	AF19	Power/Other	
VCC	AF21	Power/Other	
VCC	AF22	Power/Other	
VCC	AF8	Power/Other	
VOC	71.0	1 OWGI/OTHER	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # **Direction Type** VCC AF9 Power/Other VCC Power/Other AG11 VCC AG12 Power/Other VCC AG14 Power/Other VCC AG15 Power/Other VCC AG18 Power/Other VCC AG19 Power/Other VCC AG21 Power/Other VCC AG22 Power/Other VCC AG25 Power/Other VCC AG26 Power/Other VCC AG27 Power/Other VCC AG28 Power/Other VCC AG29 Power/Other VCC AG30 Power/Other VCC AG8 Power/Other VCC AG9 Power/Other VCC AH11 Power/Other VCC AH12 Power/Other VCC AH14 Power/Other VCC AH15 Power/Other VCC AH18 Power/Other VCC AH19 Power/Other VCC AH21 Power/Other VCC AH22 Power/Other AH25 VCC Power/Other VCC AH26 Power/Other VCC AH27 Power/Other VCC AH28 Power/Other VCC AH29 Power/Other VCC AH30 Power/Other VCC AH8 Power/Other VCC AH9 Power/Other VCC AJ11 Power/Other VCC AJ12 Power/Other VCC AJ14 Power/Other VCC AJ15 Power/Other VCC AJ18 Power/Other VCC AJ19 Power/Other VCC AJ21 Power/Other VCC AJ22 Power/Other VCC AJ25 Power/Other VCC AJ26 Power/Other VCC AJ8 Power/Other VCC AJ9 Power/Other VCC AK11 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VCC	AK12	Power/Other	
VCC	AK14	Power/Other	
VCC	AK15	Power/Other	
VCC	AK18	Power/Other	
VCC	AK19	Power/Other	
VCC	AK21	Power/Other	
VCC	AK22	Power/Other	
VCC	AK25	Power/Other	
VCC	AK26	Power/Other	
VCC	AK8	Power/Other	
VCC	AK9	Power/Other	
VCC	AL11	Power/Other	
VCC	AL12	Power/Other	
VCC	AL14	Power/Other	
VCC	AL15	Power/Other	
VCC	AL18	Power/Other	
VCC	AL19	Power/Other	
VCC	AL21	Power/Other	
VCC	AL22	Power/Other	
VCC	AL25	Power/Other	
VCC	AL26	Power/Other	
VCC	AL29	Power/Other	
VCC	AL30	Power/Other	
VCC	AL8	Power/Other	
VCC	AL9	Power/Other	
VCC	AM11	Power/Other	
VCC	AM12	Power/Other	
VCC	AM14	Power/Other	
VCC	AM15	Power/Other	
VCC	AM18	Power/Other	
VCC	AM19	Power/Other	
VCC	AM21	Power/Other	
VCC	AM22	Power/Other	
VCC	AM25	Power/Other	
VCC	AM26	Power/Other	
VCC	AM29	Power/Other	
VCC	AM30	Power/Other	
VCC	AM8	Power/Other	
VCC	AM9	Power/Other	
VCC	AN11	Power/Other	
VCC	AN12	Power/Other	
VCC	AN14	Power/Other	
VCC	AN15	Power/Other	
VCC	AN18	Power/Other	
VCC	AN19	Power/Other	
VCC	AN21	Power/Other	
L	·	l .	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # Direction **Type** VCC AN22 Power/Other VCC AN25 Power/Other VCC AN26 Power/Other VCC AN29 Power/Other VCC AN30 Power/Other VCC AN8 Power/Other VCC AN9 Power/Other VCC J10 Power/Other VCC J11 Power/Other VCC J12 Power/Other VCC J13 Power/Other VCC J14 Power/Other VCC J15 Power/Other VCC J18 Power/Other VCC J19 Power/Other J20 VCC Power/Other VCC J21 Power/Other VCC J22 Power/Other VCC J23 Power/Other VCC J24 Power/Other VCC J25 Power/Other VCC J26 Power/Other VCC J27 Power/Other VCC J28 Power/Other VCC J29 Power/Other VCC J30 Power/Other VCC J8 Power/Other VCC J9 Power/Other VCC K23 Power/Other VCC K24 Power/Other VCC K25 Power/Other VCC K26 Power/Other VCC K27 Power/Other VCC K28 Power/Other VCC K29 Power/Other VCC K30 Power/Other VCC Κ8 Power/Other VCC L8 Power/Other VCC M23 Power/Other VCC M24 Power/Other VCC M25 Power/Other M26 VCC Power/Other VCC M27 Power/Other VCC M28 Power/Other VCC M29 Power/Other VCC M30 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VCC	M8	Power/Other	
VCC	N23	Power/Other	
VCC	N24	Power/Other	
VCC	N25	Power/Other	
VCC	N26	Power/Other	
VCC	N27	Power/Other	
VCC	N28	Power/Other	
VCC	N29	Power/Other	
VCC	N30	Power/Other	
VCC	N8	Power/Other	
VCC	P8	Power/Other	
VCC	R8	Power/Other	
VCC	T23	Power/Other	
VCC	T24	Power/Other	
VCC	T25	Power/Other	
VCC	T26	Power/Other	
VCC	T27	Power/Other	
VCC	T28	Power/Other	
VCC	T29	Power/Other	
VCC	T30	Power/Other	
VCC	Т8	Power/Other	
VCC	U23	Power/Other	
VCC	U24	Power/Other	
VCC	U25	Power/Other	
VCC	U26	Power/Other	
VCC	U27	Power/Other	
VCC	U28	Power/Other	
VCC	U29	Power/Other	
VCC	U30	Power/Other	
VCC	U8	Power/Other	
VCC	V8	Power/Other	
VCC	W23	Power/Other	
VCC	W24	Power/Other	
VCC	W25	Power/Other	
VCC	W26	Power/Other	
VCC	W27	Power/Other	
VCC	W28	Power/Other	
VCC	W29	Power/Other	
VCC	W30	Power/Other	
VCC	W8	Power/Other	
VCC	Y23	Power/Other	
VCC	Y24	Power/Other	
VCC	Y25	Power/Other	
VCC	Y26	Power/Other	
VCC	Y27	Power/Other	
VCC	Y28	Power/Other	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # **Direction Type** VCC Y29 Power/Other VCC Y30 Power/Other VCC Υ8 Power/Other VCC_MB AN5 Power/Other Output REGULATION VCC_SENSE AN3 Power/Other Output VCCA A23 Power/Other VCCIOPLL C23 Power/Other VCCPLL D23 Power/Other VID_SELECT AN7 Power/Other Output VID0 AM2 Asynch CMOS Output VID1 AL5 Asynch CMOS Output VID2 AM3 Asynch CMOS Output VID3 AL6 Asynch CMOS Output VID4 AK4 Asynch CMOS Output VID5 AL4 Asynch CMOS Output VID6 AM5 Asynch CMOS Output VID7 Asynch CMOS AM7 Output VRDSEL Power/Other AL3 VSS В1 Power/Other VSS B11 Power/Other VSS B14 Power/Other VSS B17 Power/Other VSS B20 Power/Other VSS B24 Power/Other VSS B5 Power/Other В8 VSS Power/Other VSS A12 Power/Other Power/Other VSS A15 VSS A18 Power/Other VSS Power/Other Α2 VSS A21 Power/Other VSS Α6 Power/Other VSS Α9 Power/Other VSS AA23 Power/Other VSS AA24 Power/Other VSS AA25 Power/Other VSS AA26 Power/Other VSS AA27 Power/Other VSS AA28 Power/Other VSS AA29 Power/Other VSS AA3 Power/Other VSS AA30 Power/Other VSS AA6 Power/Other VSS AA7 Power/Other VSS AB1 Power/Other

Table 4-1. Alphabetical Land Assignments

	ı		
Land Name	Land #	Signal Buffer Type	Direction
VSS	AB23	Power/Other	
VSS	AB24	Power/Other	
VSS	AB25	Power/Other	
VSS	AB26	Power/Other	
VSS	AB27	Power/Other	
VSS	AB28	Power/Other	
VSS	AB29	Power/Other	
VSS	AB30	Power/Other	
VSS	AB7	Power/Other	
VSS	AC3	Power/Other	
VSS	AC6	Power/Other	
VSS	AC7	Power/Other	
VSS	AD4	Power/Other	
VSS	AD7	Power/Other	
VSS	AE10	Power/Other	
VSS	AE13	Power/Other	
VSS	AE16	Power/Other	
VSS	AE17	Power/Other	
VSS	AE2	Power/Other	
VSS	AE20	Power/Other	
VSS	AE24	Power/Other	
VSS	AE25	Power/Other	
VSS	AE26	Power/Other	
VSS	AE27	Power/Other	
VSS	AE28	Power/Other	
VSS	AE29	Power/Other	
VSS	AE30	Power/Other	
VSS	AE5	Power/Other	
VSS	AE7	Power/Other	
VSS	AF10	Power/Other	
VSS	AF13	Power/Other	
VSS	AF16	Power/Other	
VSS	AF17	Power/Other	
VSS	AF20	Power/Other	
VSS	AF23	Power/Other	
VSS	AF24	Power/Other	
VSS	AF25	Power/Other	
VSS	AF26	Power/Other	
VSS	AF27	Power/Other	
VSS	AF28	Power/Other	
VSS	AF29	Power/Other	
VSS	AF3	Power/Other	
VSS	AF30	Power/Other	
VSS	AF6	Power/Other	
VSS	AF7	Power/Other	
VSS	AG10	Power/Other	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # Direction **Type** VSS AG13 Power/Other VSS AG16 Power/Other VSS AG17 Power/Other VSS AG20 Power/Other VSS AG23 Power/Other VSS AG24 Power/Other AG7 VSS Power/Other VSS AH1 Power/Other VSS AH10 Power/Other VSS AH13 Power/Other AH16 Power/Other VSS VSS AH17 Power/Other VSS AH20 Power/Other VSS AH23 Power/Other VSS AH24 Power/Other VSS AH3 Power/Other VSS AH6 Power/Other VSS AH7 Power/Other VSS AJ10 Power/Other AJ13 VSS Power/Other VSS AJ16 Power/Other VSS AJ17 Power/Other VSS AJ20 Power/Other AJ23 VSS Power/Other VSS AJ24 Power/Other **VSS** AJ27 Power/Other VSS AJ28 Power/Other VSS AJ29 Power/Other VSS AJ30 Power/Other VSS AJ4 Power/Other VSS AJ7 Power/Other VSS AK10 Power/Other AK13 VSS Power/Other VSS AK16 Power/Other VSS AK17 Power/Other VSS AK2 Power/Other VSS AK20 Power/Other VSS AK23 Power/Other VSS AK24 Power/Other AK27 VSS Power/Other VSS AK28 Power/Other AK29 VSS Power/Other VSS AK30 Power/Other VSS AK5 Power/Other VSS AK7 Power/Other VSS AL10 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VSS	AL13	Power/Other	
VSS	AL16	Power/Other	
VSS	AL17	Power/Other	
VSS	AL20	Power/Other	
VSS	AL23	Power/Other	
VSS	AL24	Power/Other	
VSS	AL27	Power/Other	
VSS	AL28	Power/Other	
VSS	AL7	Power/Other	
VSS	AM1	Power/Other	
VSS	AM10	Power/Other	
VSS	AM13	Power/Other	
VSS	AM16	Power/Other	
VSS	AM17	Power/Other	
VSS	AM20	Power/Other	
VSS	AM23	Power/Other	
VSS	AM24	Power/Other	
VSS	AM27	Power/Other	
VSS	AM28	Power/Other	
VSS	AM4	Power/Other	
VSS	AN1	Power/Other	
VSS	AN10	Power/Other	
VSS	AN13	Power/Other	
VSS	AN16	Power/Other	
VSS	AN17	Power/Other	
VSS	AN2	Power/Other	
VSS	AN20	Power/Other	
VSS	AN23	Power/Other	
VSS	AN24	Power/Other	
VSS	AN27	Power/Other	
VSS	AN28	Power/Other	
VSS	C10	Power/Other	
VSS	C13	Power/Other	
VSS	C16	Power/Other	
VSS	C19	Power/Other	
VSS	C22	Power/Other	
VSS	C24	Power/Other	
VSS	C4	Power/Other	
VSS	C7	Power/Other	
VSS	D12	Power/Other	
VSS	D15	Power/Other	
VSS	D18	Power/Other	
VSS	D21	Power/Other	
VSS	D24	Power/Other	
VSS	D3	Power/Other	
VSS	D5	Power/Other	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land Name Land # **Direction Type** VSS D6 Power/Other VSS D9 Power/Other VSS E11 Power/Other VSS E14 Power/Other VSS E17 Power/Other VSS E2 Power/Other VSS E20 Power/Other VSS E25 Power/Other VSS E26 Power/Other VSS E27 Power/Other VSS E28 Power/Other VSS E8 Power/Other VSS F10 Power/Other VSS F13 Power/Other VSS F16 Power/Other VSS F19 Power/Other VSS F22 Power/Other VSS F4 Power/Other VSS F7 Power/Other VSS H10 Power/Other VSS H11 Power/Other VSS H12 Power/Other VSS H13 Power/Other VSS H14 Power/Other VSS H17 Power/Other H18 VSS Power/Other VSS H19 Power/Other VSS H20 Power/Other VSS H21 Power/Other VSS H22 Power/Other VSS H23 Power/Other VSS H24 Power/Other VSS H25 Power/Other VSS H26 Power/Other VSS H27 Power/Other VSS H28 Power/Other VSS Н3 Power/Other VSS Н6 Power/Other VSS Н7 Power/Other VSS Н8 Power/Other VSS Н9 Power/Other VSS J4 Power/Other VSS J7 Power/Other VSS K2 Power/Other VSS K5 Power/Other VSS K7 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VSS	L23	Power/Other	
VSS	L24	Power/Other	
VSS	L25	Power/Other	
VSS	L26	Power/Other	
VSS	L27	Power/Other	
VSS	L28	Power/Other	
VSS	L29	Power/Other	
VSS	L3	Power/Other	
VSS	L30	Power/Other	
VSS	L6	Power/Other	
VSS	L7	Power/Other	
VSS	M1	Power/Other	
VSS	M7	Power/Other	
VSS	N3	Power/Other	
VSS	N6	Power/Other	
VSS	N7	Power/Other	
VSS	P23	Power/Other	
VSS	P24	Power/Other	
VSS	P25	Power/Other	
VSS	P26	Power/Other	
VSS	P27	Power/Other	
VSS	P28	Power/Other	
VSS	P29	Power/Other	
VSS	P30	Power/Other	
VSS	P4	Power/Other	
VSS	P7	Power/Other	
VSS	R2	Power/Other	
VSS	R23	Power/Other	
VSS	R24	Power/Other	
VSS	R25	Power/Other	
VSS	R26	Power/Other	
VSS	R27	Power/Other	
VSS	R28	Power/Other	
VSS	R29	Power/Other	
VSS	R30	Power/Other	
VSS	R5	Power/Other	
VSS	R7	Power/Other	
VSS	T3	Power/Other	
VSS	T6	Power/Other	
VSS	T7	Power/Other	
VSS	U7	Power/Other	
VSS	V23	Power/Other	
VSS	V23	Power/Other	
VSS	V24 V25	Power/Other	
VSS	V25 V26	Power/Other	
VSS	V26 V27	Power/Other	
v >>	V Z /	rower/Other	

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VSS	V28	Power/Other	
VSS	V29	Power/Other	
VSS	V3	Power/Other	
VSS	V30	Power/Other	
VSS	V6	Power/Other	
VSS	V7	Power/Other	
VSS	W4	Power/Other	
VSS	W7	Power/Other	
VSS	Y2	Power/Other	
VSS	Y5	Power/Other	
VSS	Y7	Power/Other	
VSS_MB_ REGULATION	AN6	Power/Other	Output
VSS_SENSE	AN4	Power/Other	Output
VSSA	B23	Power/Other	
VTT	B25	Power/Other	
VTT	B26	Power/Other	
VTT	B27	Power/Other	
VTT	B28	Power/Other	
VTT	B29	Power/Other	
VTT	B30	Power/Other	
VTT	A25	Power/Other	
VTT	A26	Power/Other	
VTT	A27	Power/Other	
VTT	A28	Power/Other	
VTT	A29	Power/Other	
VTT	A30	Power/Other	
VTT	C25	Power/Other	
VTT	C26	Power/Other	
VTT	C27	Power/Other	
VTT	C28	Power/Other	
VTT	C29	Power/Other	
VTT	C30	Power/Other	
VTT	D25	Power/Other	
VTT	D26	Power/Other	
VTT	D27	Power/Other	
VTT	D28	Power/Other	
VTT	D29	Power/Other	
VTT	D30	Power/Other	
VTT_OUT_LE FT	J1	Power/Other	Output
VTT_OUT_RI GHT	AA1	Power/Other	Output
VTT_SEL	F27	Power/Other	Output

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name** Direction Type VTT_OUT_RI AA1 Power/Other Output FC39 Power/Other AA2 AA3 VSS Power/Other AA4 A21# Source Synch Input/Output AA5 A23# Source Synch Input/Output AA6 VSS Power/Other VSS Power/Other AA7 VCC Power/Other AA8 AA23 VSS Power/Other AA24 VSS Power/Other AA25 VSS Power/Other AA26 VSS Power/Other AA27 VSS Power/Other AA28 VSS Power/Other AA29 VSS Power/Other AA30 VSS Power/Other VSS AB1 Power/Other AB2 IERR# Asynch CMOS Output FC37 AB3 Power/Other AB4 A26# Source Synch Input/Output AB5 A24# Source Synch Input/Output AB6 A17# Source Synch Input/Output AB7 VSS Power/Other AB8 VCC Power/Other AB23 VSS Power/Other AB24 VSS Power/Other AB25 VSS Power/Other AB26 VSS Power/Other AB27 VSS Power/Other AB28 VSS Power/Other AB29 VSS Power/Other **AB30** VSS Power/Other AC1 TMS TAP Input AC2 DBR# Power/Other Output AC3 VSS Power/Other AC4 RESERVED A25# AC5 Source Synch Input/Output AC6 VSS Power/Other AC7 VSS Power/Other AC8 VCC Power/Other AC23 VCC Power/Other VCC Power/Other AC24 VCC AC25 Power/Other VCC AC26 Power/Other AC27 VCC Power/Other

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
AC28	VCC	Power/Other	
AC29	VCC	Power/Other	
AC30	VCC	Power/Other	
AD1	TDI	TAP	Input
AD2	BPM2#	Common Clock	Input/Output
AD3	FC36	Power/Other	
AD4	VSS	Power/Other	
AD5	ADSTB1#	Source Synch	Input/Output
AD6	A22#	Source Synch	Input/Output
AD7	VSS	Power/Other	
AD8	VCC	Power/Other	
AD23	VCC	Power/Other	
AD24	VCC	Power/Other	
AD25	VCC	Power/Other	
AD26	VCC	Power/Other	
AD27	VCC	Power/Other	
AD28	VCC	Power/Other	
AD29	VCC	Power/Other	
AD30	VCC	Power/Other	
AE1	TCK	TAP	Input
AE2	VSS	Power/Other	
AE3	FC18	Power/Other	
AE4	RESERVED		
AE5	VSS	Power/Other	
AE6	RESERVED		
AE7	VSS	Power/Other	
AE8	SKTOCC#	Power/Other	Output
AE9	VCC	Power/Other	
AE10	VSS	Power/Other	
AE11	VCC	Power/Other	
AE12	VCC	Power/Other	
AE13	VSS	Power/Other	
AE14	VCC	Power/Other	
AE15	VCC	Power/Other	
AE16	VSS	Power/Other	
AE17	VSS	Power/Other	
AE18	VCC	Power/Other	
AE19	VCC	Power/Other	
AE20	VSS	Power/Other	
AE21	VCC	Power/Other	
AE22	VCC	Power/Other	
AE23	VCC	Power/Other	
AE24	VSS	Power/Other	
AE25	VSS	Power/Other	
AE26	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

		3igiiiiciit	
Land #	Land Name	Signal Buffer Type	Direction
AE28	VSS	Power/Other	
AE29	VSS	Power/Other	
AE30	VSS	Power/Other	
AF1	TDO	TAP	Output
AF2	BPM4#	Common Clock	Input/Output
AF3	VSS	Power/Other	
AF4	A28#	Source Synch	Input/Output
AF5	A27#	Source Synch	Input/Output
AF6	VSS	Power/Other	
AF7	VSS	Power/Other	
AF8	VCC	Power/Other	
AF9	VCC	Power/Other	
AF10	VSS	Power/Other	
AF11	VCC	Power/Other	
AF12	VCC	Power/Other	
AF13	VSS	Power/Other	
AF14	VCC	Power/Other	
AF15	VCC	Power/Other	
AF16	VSS	Power/Other	
AF17	VSS	Power/Other	
AF18	VCC	Power/Other	
AF19	VCC	Power/Other	
AF20	VSS	Power/Other	
AF21	VCC	Power/Other	
AF22	VCC	Power/Other	
AF23	VSS	Power/Other	
AF24	VSS	Power/Other	
AF25	VSS	Power/Other	
AF26	VSS	Power/Other	
AF27	VSS	Power/Other	
AF28	VSS	Power/Other	
AF29	VSS	Power/Other	
AF30	VSS	Power/Other	
AG1	TRST#	TAP	Input
AG2	BPM3#	Common Clock	Input/Output
AG3	BPM5#	Common Clock	Input/Output
AG4	A30#	Source Synch	Input/Output
AG5	A31#	Source Synch	Input/Output
AG6	A29#	Source Synch	Input/Output
AG7	VSS	Power/Other	
AG8	VCC	Power/Other	
AG9	VCC	Power/Other	
AG10	VSS	Power/Other	
AG11	VCC	Power/Other	
AG12	VCC	Power/Other	
AG13	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

		Significant	
Land #	Land Name	Signal Buffer Type	Direction
AG14	VCC	Power/Other	
AG15	VCC	Power/Other	
AG16	VSS	Power/Other	
AG17	VSS	Power/Other	
AG18	VCC	Power/Other	
AG19	VCC	Power/Other	
AG20	VSS	Power/Other	
AG21	VCC	Power/Other	
AG22	VCC	Power/Other	
AG23	VSS	Power/Other	
AG24	VSS	Power/Other	
AG25	VCC	Power/Other	
AG26	VCC	Power/Other	
AG27	VCC	Power/Other	
AG28	VCC	Power/Other	
AG29	VCC	Power/Other	
AG30	VCC	Power/Other	
AH1	VSS	Power/Other	
AH2	RESERVED		
AH3	VSS	Power/Other	
AH4	A32#	Source Synch	Input/Output
AH5	A33#	Source Synch	Input/Output
AH6	VSS	Power/Other	
AH7	VSS	Power/Other	
AH8	VCC	Power/Other	
AH9	VCC	Power/Other	
AH10	VSS	Power/Other	
AH11	VCC	Power/Other	
AH12	VCC	Power/Other	
AH13	VSS	Power/Other	
AH14	VCC	Power/Other	
AH15	VCC	Power/Other	
AH16	VSS	Power/Other	
AH17	VSS	Power/Other	
AH18	VCC	Power/Other	
AH19	VCC	Power/Other	
AH20	VSS	Power/Other	
AH21	VCC	Power/Other	
AH22	VCC	Power/Other	
AH23	VSS	Power/Other	
AH24	VSS	Power/Other	
AH25	VCC	Power/Other	
AH26	VCC	Power/Other	
AH27	VCC	Power/Other	
AH28	VCC	Power/Other	
AH29	VCC	Power/Other	
	i	i .	L

Table 4-2. Numerical Land Assignment

Signal Buffer Land **Land Name** Direction **Type** AH30 VCC Power/Other Common Clock Input/Output BPM1# AJ1 AJ2 BPM0# Common Clock Input/Output ITP_CLK1 AJ3 TAP Input AJ4 VSS Power/Other AJ5 A34# Source Synch Input/Output AJ6 A35# Source Synch Input/Output AJ7 VSS Power/Other AJ8 VCC Power/Other AJ9 VCC Power/Other AJ10 VSS Power/Other AJ11 VCC Power/Other VCC AJ12 Power/Other AJ13 VSS Power/Other AJ14 VCC Power/Other AJ15 VCC Power/Other VSS Power/Other AJ16 AJ17 VSS Power/Other AJ18 VCC Power/Other AJ19 VCC Power/Other VSS AJ20 Power/Other AJ21 VCC Power/Other AJ22 VCC Power/Other AJ23 VSS Power/Other AJ24 VSS Power/Other AJ25 VCC Power/Other AJ26 VCC Power/Other AJ27 VSS Power/Other AJ28 VSS Power/Other VSS AJ29 Power/Other AJ30 VSS Power/Other AK1 FC24 Power/Other AK2 VSS Power/Other AK3 ITP_CLK0 TAP Input AK4 VID4 Asynch CMOS Output AK5 VSS Power/Other FC8 AK6 Power/Other AK7 VSS Power/Other AK8 VCC Power/Other AK9 VCC Power/Other VSS AK10 Power/Other AK11 VCC Power/Other AK12 VCC Power/Other AK13 VSS Power/Other AK14 VCC Power/Other AK15 VCC Power/Other

Table 4-2. Numerical Land Assignment

		0.9	
Land #	Land Name	Signal Buffer Type	Direction
AK16	VSS	Power/Other	
AK17	VSS	Power/Other	
AK18	VCC	Power/Other	
AK19	VCC	Power/Other	
AK20	VSS	Power/Other	
AK21	VCC	Power/Other	
AK22	VCC	Power/Other	
AK23	VSS	Power/Other	
AK24	VSS	Power/Other	
AK25	VCC	Power/Other	
AK26	VCC	Power/Other	
AK27	VSS	Power/Other	
AK28	VSS	Power/Other	
AK29	VSS	Power/Other	
AK30	VSS	Power/Other	
AL1	FC25	Power/Other	
AL2	PROCHOT#	Asynch CMOS	Input/Output
AL3	VRDSEL	Power/Other	
AL4	VID5	Asynch CMOS	Output
AL5	VID1	Asynch CMOS	Output
AL6	VID3	Asynch CMOS	Output
AL7	VSS	Power/Other	
AL8	VCC	Power/Other	
AL9	VCC	Power/Other	
AL10	VSS	Power/Other	
AL11	VCC	Power/Other	
AL12	VCC	Power/Other	
AL13	VSS	Power/Other	
AL14	VCC	Power/Other	
AL15	VCC	Power/Other	
AL16	VSS	Power/Other	
AL17	VSS	Power/Other	
AL18	VCC	Power/Other	
AL19	VCC	Power/Other	
AL20	VSS	Power/Other	
AL21	VCC	Power/Other	
AL22	VCC	Power/Other	
AL23	VSS	Power/Other	
AL24	VSS	Power/Other	
AL25	VCC	Power/Other	
AL26	VCC	Power/Other	
AL27	VSS	Power/Other	
AL28	VSS	Power/Other	
AL29	VCC	Power/Other	
AL30	VCC	Power/Other	
AM1	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name** Direction **Type** Asynch CMOS AM2 VIDO Output Asynch CMOS AM3 VID2 Output AM4 VSS Power/Other VID6 AM5 Asynch CMOS Output AM6 FC40 Power/Other AM7 VID7 Asynch CMOS Output AM8 VCC Power/Other AM9 VCC Power/Other VSS AM10 Power/Other AM11 VCC Power/Other AM12 VCC Power/Other AM13 VSS Power/Other VCC AM14 Power/Other VCC AM15 Power/Other VSS AM16 Power/Other AM17 VSS Power/Other AM18 VCC Power/Other AM19 VCC Power/Other AM20 VSS Power/Other AM21 VCC Power/Other AM22 VCC Power/Other AM23 VSS Power/Other AM24 VSS Power/Other AM25 VCC Power/Other AM26 VCC Power/Other AM27 **VSS** Power/Other AM28 VSS Power/Other AM29 VCC Power/Other AM30 VCC Power/Other AN1 VSS Power/Other VSS Power/Other AN2 AN3 VCC_SENSE Power/Other Output VSS_SENSE Power/Other AN4 Output VCC_MB AN5 Power/Other Output REGULATION VSS_MB_ Power/Other AN₆ Output REGULATION VID_SELECT AN7 Power/Other Output AN8 VCC Power/Other AN9 VCC Power/Other AN10 VSS Power/Other AN11 VCC Power/Other AN12 VCC Power/Other AN13 VSS Power/Other AN14 VCC Power/Other AN15 VCC Power/Other AN16 VSS Power/Other

Table 4-2. Numerical Land Assignment

		3	
Land #	Land Name	Signal Buffer Type	Direction
AN17	VSS	Power/Other	
AN18	VCC	Power/Other	
AN19	VCC	Power/Other	
AN20	VSS	Power/Other	
AN21	VCC	Power/Other	
AN22	VCC	Power/Other	
AN23	VSS	Power/Other	
AN24	VSS	Power/Other	
AN25	VCC	Power/Other	
AN26	VCC	Power/Other	
AN27	VSS	Power/Other	
AN28	VSS	Power/Other	
AN29	VCC	Power/Other	
AN30	VCC	Power/Other	
A2	VSS	Power/Other	
А3	RS2#	Common Clock	Input
A4	D02#	Source Synch	Input/Output
A 5	D04#	Source Synch	Input/Output
A6	VSS	Power/Other	
A7	D07#	Source Synch	Input/Output
A8	DBI0#	Source Synch	Input/Output
Α9	VSS	Power/Other	
A10	D08#	Source Synch	Input/Output
A11	D09#	Source Synch	Input/Output
A12	VSS	Power/Other	
A13	COMP0	Power/Other	Input
A14	D50#	Source Synch	Input/Output
A15	VSS	Power/Other	
A16	DSTBN3#	Source Synch	Input/Output
A17	D56#	Source Synch	Input/Output
A18	VSS	Power/Other	
A19	D61#	Source Synch	Input/Output
A20	RESERVED		
A21	VSS	Power/Other	
A22	D62#	Source Synch	Input/Output
A23	VCCA	Power/Other	
A24	FC23	Power/Other	
A25	VTT	Power/Other	
A26	VTT	Power/Other	
A27	VTT	Power/Other	
A28	VTT	Power/Other	
A29	VTT	Power/Other	
A30	VTT	Power/Other	
B1	VSS	Power/Other	
B10	D10#	Source Synch	Input/Output
B11	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name Direction** Type B12 D13# Source Synch Input/Output Power/Other COMP8 B13 Input B14 VSS Power/Other B15 D53# Source Synch Input/Output B16 D55# Source Synch Input/Output VSS B17 Power/Other B18 D57# Input/Output Source Synch B19 D60# Source Synch Input/Output B2 DBSY# Common Clock Input/Output ВЗ RS0# Common Clock B4 D00# Input/Output Source Synch B5 VSS Power/Other В6 D05# Source Synch Input/Output B7 D06# Source Synch Input/Output В8 VSS Power/Other B9 DSTBP0# Input/Output Source Synch B20 VSS Power/Other B21 D59# Source Synch Input/Output B22 D63# Source Synch Input/Output B23 VSSA Power/Other B24 VSS Power/Other B25 VTT Power/Other B26 VTT Power/Other B27 VTT Power/Other B28 VTT Power/Other Power/Other B29 VTT B30 VTT Power/Other C1 DRDY# Common Clock Input/Output BNR# Input/Output C2 Common Clock LOCK# Input/Output C3 Common Clock C4 VSS Power/Other C5 D01# Source Synch Input/Output C6 D03# Input/Output Source Synch C7 VSS Power/Other C8 DSTBN0# Source Synch | Input/Output C9 BPMb1# Common Clock Input/Output C10 VSS Power/Other C11 D11# Input/Output Source Synch C12 D14# Source Synch Input/Output C13 VSS Power/Other C14 D52# Source Synch Input/Output C15 D51# Source Synch Input/Output C16 VSS Power/Other C17 DSTBP3# Input/Output Source Synch C18 D54# Source Synch Input/Output C19 VSS Power/Other

Table 4-2. Numerical Land Assignment

		Significant	
Land #	Land Name	Signal Buffer Type	Direction
C20	DBI3#	Source Synch	Input/Output
C21	D58#	Source Synch	Input/Output
C22	VSS	Power/Other	
C23	VCCIOPLL	Power/Other	
C24	VSS	Power/Other	
C25	VTT	Power/Other	
C26	VTT	Power/Other	
C27	VTT	Power/Other	
C28	VTT	Power/Other	
C29	VTT	Power/Other	
C30	VTT	Power/Other	
D1	RESERVED		
D2	ADS#	Common Clock	Input/Output
D3	VSS	Power/Other	
D4	HIT#	Common Clock	Input/Output
D5	VSS	Power/Other	
D6	VSS	Power/Other	
D7	D20#	Source Synch	Input/Output
D8	D12#	Source Synch	Input/Output
D9	VSS	Power/Other	
D10	D22#	Source Synch	Input/Output
D11	D15#	Source Synch	Input/Output
D12	VSS	Power/Other	
D13	D25#	Source Synch	Input/Output
D14	RESERVED		
D15	VSS	Power/Other	
D16	RESERVED		
D17	D49#	Source Synch	Input/Output
D18	VSS	Power/Other	
D19	DBI2#	Source Synch	Input/Output
D20	D48#	Source Synch	Input/Output
D21	VSS	Power/Other	
D22	D46#	Source Synch	Input/Output
D23	VCCPLL	Power/Other	
D24	VSS	Power/Other	
D25	VTT	Power/Other	
D26	VTT	Power/Other	
D27	VTT	Power/Other	
D28	VTT	Power/Other	
D29	VTT	Power/Other	
D30	VTT	Power/Other	
E2	VSS	Power/Other	
E3	TRDY#	Common Clock	Input
E4	HITM#	Common Clock	Input/Output
E5	FC20	Power/Other	
E6	RESERVED		

Table 4-2. Numerical Land Assignment

Land Wame Signal Buffer Type Direction E7 RESERVED Fower/Other E8 VSS Power/Other E9 D19# Source Synch Input/Output E10 D21# Source Synch Input/Output E11 VSS Power/Other Input/Output E12 DSTBP1# Source Synch Input/Output E13 D26# Source Synch Input/Output E14 VSS Power/Other Input/Output E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E24 FC10 Power/Other <t< th=""><th></th><th></th><th>Significant</th><th></th></t<>			Significant	
E8 VSS Power/Other E9 D19# Source Synch Input/Output E10 D21# Source Synch Input/Output E11 VSS Power/Other E12 DSTBP1# Source Synch Input/Output E13 D26# Source Synch Input/Output E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED Input/Other E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other <tr< td=""><td></td><td>Land Name</td><td></td><td>Direction</td></tr<>		Land Name		Direction
E9 D19# Source Synch Input/Output E10 D21# Source Synch Input/Output E11 VSS Power/Other E12 DSTBP1# Source Synch Input/Output E13 D26# Source Synch Input/Output E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED Input/Output E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other <	E7	RESERVED		
E10 D21# Source Synch Input/Output E11 VSS Power/Other E12 DSTBP1# Source Synch Input/Output E13 D26# Source Synch Input/Output E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E24 FC10 Power/Other E25 VSS Power/Other E24 FC10 Power/Other E29 FC26 Power/Other E27 VSS Power/Other Input F <td>E8</td> <td>VSS</td> <td>Power/Other</td> <td></td>	E8	VSS	Power/Other	
E11 VSS Power/Other E12 DSTBP1# Source Synch Input/Output E13 D26# Source Synch Input/Output E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED Input/Other E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other F2 GTLREF2 Power/Other F3 BR0# Common Clock Input/Output F4	E9	D19#	Source Synch	Input/Output
E12 DSTBP1# Source Synch Input/Output E13 D26# Source Synch Input/Output E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BR0# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 VSS Power/Other F11 D33# Source Synch Input/Output F12 D44# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 U43# Source Synch Input/Output F11 D43# Source Synch Input/Output F12 D44# Source Synch Input/Output F14 D44# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 U43# Source Synch Input/Output F170 U43# Source Synch Input/Output F18 D38# Source Synch Input/Output	E10	D21#	Source Synch	Input/Output
E13 D26# Source Synch Input/Output E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED Input/Output E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common	E11	VSS	Power/Other	
E14 VSS Power/Other E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED Input/Output E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other F2 GTLREF2 Power/Other F3 BR0# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input/Output F9 D18# Source S	E12	DSTBP1#	Source Synch	Input/Output
E15 D33# Source Synch Input/Output E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F1 SR1# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 VSS Power/Other F11 D28# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	E13	D26#	Source Synch	Input/Output
E16 D34# Source Synch Input/Output E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BR0# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 D43# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F20 D41# Source Synch Input/Output	E14	VSS	Power/Other	
E17 VSS Power/Other E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BR0# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F11 D37# Source Synch Input/Output F12 D37# Source Synch Input/Output F13 VSS Power/Other F14 D38# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	E15	D33#	Source Synch	Input/Output
E18 D39# Source Synch Input/Output E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BR0# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D30# Source Synch Input/Output F19 VSS Power/Other F11 D37# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F119 VSS Power/Other F11 D43# Source Synch Input/Output F12 D43# Source Synch Input/Output	E16	D34#	Source Synch	Input/Output
E19 D40# Source Synch Input/Output E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F1 GTLREF2 Power/Other F2 GTLREF2 Power/Other F5 RS1# Common Clock Input/Output F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F119 VSS Power/Other F110 D41# Source Synch Input/Output F111 D41# Source Synch Input/Output F112 D41# Source Synch Input/Output F113 D41# Source Synch Input/Output F114 D41# Source Synch Input/Output F115 D41# Source Synch Input/Output F116 VSS Power/Other F117 D41# Source Synch Input/Output F118 D41# Source Synch Input/Output F119 VSS Power/Other F110 D41# Source Synch Input/Output F111 D41# Source Synch Input/Output F112 D41# Source Synch Input/Output F115 D41# Source Synch Input/Output	E17	VSS	Power/Other	
E20 VSS Power/Other E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	E18	D39#	Source Synch	Input/Output
E21 D42# Source Synch Input/Output E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F119 VSS Power/Other F110 D43# Source Synch Input/Output F111 D43# Source Synch Input/Output F112 D43# Source Synch Input/Output F113 D43# Source Synch Input/Output F140 D43# Source Synch Input/Output F151 D43# Source Synch Input/Output F151 D43# Source Synch Input/Output	E19	D40#	Source Synch	Input/Output
E22 D45# Source Synch Input/Output E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 D41# Source Synch Input/Output F119 VSS Power/Other F110 D41# Source Synch Input/Output F111 D41# Source Synch Input/Output	E20	VSS	Power/Other	
E23 RESERVED E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	E21	D42#	Source Synch	Input/Output
E24 FC10 Power/Other E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F20 D41# Source Synch Input/Output F19 Input/Output F19 Input/Output F19 Input/Output F19 Input/Output	E22	D45#	Source Synch	Input/Output
E25 VSS Power/Other E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	E23	RESERVED		
E26 VSS Power/Other E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other Input F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 VSS Power/Other F11 D28# Source Synch Input/Output F12 D30# Source Synch Input/Output F13 Source Synch Input/Output F14 D38# Source Synch Input/Output F15 D30# Source Synch Input/Output F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output	E24	FC10	Power/Other	
E27 VSS Power/Other E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other Input F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 D41# Source Synch Input/Output F119 VSS Power/Other F110 D41# Source Synch Input/Output F111 D418 Source Synch Input/Output F112 D418 Source Synch Input/Output F113 D418 Source Synch Input/Output F114 D418 Source Synch Input/Output F115 D418 Source Synch Input/Output F116 D418 Source Synch Input/Output F117 D418 Source Synch Input/Output F118 D418 Source Synch Input/Output F119 VSS Power/Other F110 D418 Source Synch Input/Output F110 D418 Source Synch Input/Output F111 D418 Source Synch Input/Output	E25	VSS	Power/Other	
E28 VSS Power/Other E29 FC26 Power/Other F2 GTLREF2 Power/Other Input F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F19 VSS Power/Other F10 D41# Source Synch Input/Output F119 VSS Power/Other F110 D41# Source Synch Input/Output F111 D418# Source Synch Input/Output	E26	VSS	Power/Other	
E29FC26Power/OtherInputF2GTLREF2Power/OtherInput/OutputF3BRO#Common ClockInput/OutputF4VSSPower/OtherF5RS1#Common ClockInputF6FC21Power/OtherF7VSSPower/OtherF8D17#Source SynchInput/OutputF9D18#Source SynchInput/OutputF10VSSPower/OtherF11D23#Source SynchInput/OutputF12D24#Source SynchInput/OutputF13VSSPower/OtherF14D28#Source SynchInput/OutputF15D30#Source SynchInput/OutputF16VSSPower/OtherF17D37#Source SynchInput/OutputF18D38#Source SynchInput/OutputF19VSSPower/OtherF20D41#Source SynchInput/OutputF21D43#Source SynchInput/Output	E27	VSS	Power/Other	
F2 GTLREF2 Power/Other Input F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F10 D41# Source Synch Input/Output F110 Source Synch Input/Output F111 D418 Source Synch Input/Output	E28	VSS	Power/Other	
F3 BRO# Common Clock Input/Output F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	E29	FC26	Power/Other	
F4 VSS Power/Other F5 RS1# Common Clock Input F6 FC21 Power/Other F F7 VSS Power/Other Input/Output F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output	F2	GTLREF2	Power/Other	Input
F5 RS1# Common Clock Input F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F3	BR0#	Common Clock	Input/Output
F6 FC21 Power/Other F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F10 D41# Source Synch Input/Output F10 D41# Source Synch Input/Output F11 D43# Source Synch Input/Output F12 D43# Source Synch Input/Output	F4	VSS	Power/Other	
F7 VSS Power/Other F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F5	RS1#	Common Clock	Input
F8 D17# Source Synch Input/Output F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F6	FC21	Power/Other	
F9 D18# Source Synch Input/Output F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F7	VSS	Power/Other	
F10 VSS Power/Other F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F8	D17#	Source Synch	Input/Output
F11 D23# Source Synch Input/Output F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F9	D18#	Source Synch	Input/Output
F12 D24# Source Synch Input/Output F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F10	VSS	Power/Other	
F13 VSS Power/Other F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F11	D23#	Source Synch	Input/Output
F14 D28# Source Synch Input/Output F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output			Source Synch	Input/Output
F15 D30# Source Synch Input/Output F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F13	VSS	Power/Other	
F16 VSS Power/Other F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F14	D28#		Input/Output
F17 D37# Source Synch Input/Output F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F15	D30#	Source Synch	Input/Output
F18 D38# Source Synch Input/Output F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output		VSS		
F19 VSS Power/Other F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output		D37#		Input/Output
F20 D41# Source Synch Input/Output F21 D43# Source Synch Input/Output	F18	D38#	Source Synch	Input/Output
F21 D43# Source Synch Input/Output				
, , , , , , , , , , , , , , , , , , ,				Input/Output
1 1 1 1			Source Synch	Input/Output
	F22	VSS	Power/Other	
F23 RESERVED		RESERVED		
F24 TESTHI7 Power/Other Input				

Table 4-2. Numerical Land Assignment

	ı		
Land #	Land Name	Signal Buffer Type	Direction
F25	TESTHI2	Power/Other	Input
F26	TESTHI0	Power/Other	Input
F27	VTT_SEL	Power/Other	Output
F28	BCLK0	Clock	Input
F29	RESERVED		
G1	BPMb0#	Common Clock	Input/Output
G2	COMP2	Power/Other	Input
G3	BPMb3#	Common Clock	Input/Output
G4	BPMb2#	Common Clock	Input/Output
G5	PECI	Power/Other	Input/Output
G6	RESERVED		
G7	DEFER#	Common Clock	Input
G8	BPRI#	Common Clock	Input
G9	D16#	Source Synch	Input/Output
G10	GTLREF3	Power/Other	Input
G11	DBI1#	Source Synch	Input/Output
G12	DSTBN1#	Source Synch	Input/Output
G13	D27#	Source Synch	Input/Output
G14	D29#	Source Synch	Input/Output
G15	D31#	Source Synch	Input/Output
G16	D32#	Source Synch	Input/Output
G17	D36#	Source Synch	Input/Output
G18	D35#	Source Synch	Input/Output
G19	DSTBP2#	Source Synch	Input/Output
G20	DSTBN2#	Source Synch	Input/Output
G21	D44#	Source Synch	Input/Output
G22	D47#	Source Synch	Input/Output
G23	RESET#	Common Clock	Input
G24	TESTHI6	Power/Other	Input
G25	TESTHI3	Power/Other	Input
G26	TESTHI5	Power/Other	Input
G27	TESTHI4	Power/Other	Input
G28	BCLK1	Clock	Input
G29	BSEL0	Asynch CMOS	Output
G30	BSEL2	Asynch CMOS	Output
H1	GTLREF0	Power/Other	Input
H2	GTLREF1	Power/Other	Input
Н3	VSS	Power/Other	
H4	FC35	Power/Other	
H5	TESTHI10	Power/Other	Input
H6	VSS	Power/Other	
H7	VSS	Power/Other	
Н8	VSS	Power/Other	
Н9	VSS	Power/Other	
H10	VSS	Power/Other	
H11	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

Land # Land Name Signal Buffer Type Direction H12 VSS Power/Other H13 VSS Power/Other H14 VSS Power/Other H15 FC32 Power/Other H16 FC33 Power/Other H17 VSS Power/Other H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other J3 FC22 Power/Othe
H13 VSS Power/Other H14 VSS Power/Other H15 FC32 Power/Other H16 FC33 Power/Other H17 VSS Power/Other H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/O
H14 VSS Power/Other H15 FC32 Power/Other H16 FC33 Power/Other H17 VSS Power/Other H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source
H15 FC32 Power/Other H16 FC33 Power/Other H17 VSS Power/Other H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 RE01# Source Synch Input/Output J6 <
H16 FC33 Power/Other H17 VSS Power/Other H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REO1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output <tr< td=""></tr<>
H17 VSS Power/Other H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REO1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other
H18 VSS Power/Other H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other
H19 VSS Power/Other H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other
H20 VSS Power/Other H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H21 VSS Power/Other H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H22 VSS Power/Other H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H23 VSS Power/Other H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H24 VSS Power/Other H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other Output J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H25 VSS Power/Other H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H26 VSS Power/Other H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H27 VSS Power/Other H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H28 VSS Power/Other H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE Power/Other J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REO1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H29 FC15 Power/Other H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
H30 BSEL1 Asynch CMOS Output J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J1 VTT_OUT_LE FT Power/Other Output J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J1 FT Power/Other Output J2 FC3 Power/Other J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J3 FC22 Power/Other J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J4 VSS Power/Other J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J5 REQ1# Source Synch Input/Output J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J6 REQ4# Source Synch Input/Output J7 VSS Power/Other J8 VCC Power/Other
J7 VSS Power/Other J8 VCC Power/Other
J8 VCC Power/Other
IQ VCC Power/Other
37 VCC FOWEI/Other
J10 VCC Power/Other
J11 VCC Power/Other
J12 VCC Power/Other
J13 VCC Power/Other
J14 VCC Power/Other
J15 VCC Power/Other
J16 FC31 Power/Other
J17 FC34 Power/Other
J18 VCC Power/Other
J18 VCC Power/Other
J18 VCC Power/Other J19 VCC Power/Other
J18 VCC Power/Other J19 VCC Power/Other J20 VCC Power/Other
J18 VCC Power/Other J19 VCC Power/Other J20 VCC Power/Other J21 VCC Power/Other
J18 VCC Power/Other J19 VCC Power/Other J20 VCC Power/Other J21 VCC Power/Other J22 VCC Power/Other
J18 VCC Power/Other J19 VCC Power/Other J20 VCC Power/Other J21 VCC Power/Other J22 VCC Power/Other J23 VCC Power/Other

Table 4-2. Numerical Land Assignment

		9	
Land #	Land Name	Signal Buffer Type	Direction
J27	VCC	Power/Other	
J28	VCC	Power/Other	
J29	VCC	Power/Other	
J30	VCC	Power/Other	
K1	LINTO	Asynch CMOS	Input
K2	VSS	Power/Other	
К3	A20M#	Asynch CMOS	Input
K4	REQ0#	Source Synch	Input/Output
K5	VSS	Power/Other	
K6	REQ3#	Source Synch	Input/Output
K7	VSS	Power/Other	
K8	VCC	Power/Other	
K23	VCC	Power/Other	
K24	VCC	Power/Other	
K25	VCC	Power/Other	
K26	VCC	Power/Other	
K27	VCC	Power/Other	
K28	VCC	Power/Other	
K29	VCC	Power/Other	
K30	VCC	Power/Other	
L1	LINT1	Asynch CMOS	Input
L2	SLP#	Asynch CMOS	Input
L3	VSS	Power/Other	,
L4	A06#	Source Synch	Input/Output
L5	A03#	Source Synch	Input/Output
L6	VSS	Power/Other	
L7	VSS	Power/Other	
L8	VCC	Power/Other	
L23	VSS	Power/Other	
L24	VSS	Power/Other	
L25	VSS	Power/Other	
L26	VSS	Power/Other	
L27	VSS	Power/Other	
L28	VSS	Power/Other	
L29	VSS	Power/Other	
L30	VSS	Power/Other	
M1	VSS	Power/Other	
M2	THERMTRIP#	Asynch CMOS	Output
M3	STPCLK#	Asynch CMOS	Input
M4	A07#	Source Synch	Input/Output
M5	A05#	Source Synch	Input/Output
M6	REQ2#	Source Synch	Input/Output
M7	VSS	Power/Other	pat/ Output
M8	VCC	Power/Other	
M23	VCC	Power/Other	
M24	VCC	Power/Other	
17124	VCC	i owei/Othel	

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name** Direction **Type** M25 VCC Power/Other M26 VCC Power/Other M27 VCC Power/Other M28 VCC Power/Other M29 VCC Power/Other M30 VCC Power/Other PWRGOOD N1 Power/Other Input N2 IGNNE# Asynch CMOS Input VSS N3 Power/Other N4 **RESERVED** Ν5 RESERVED Power/Other N6 VSS VSS N7 Power/Other VCC Ν8 Power/Other VCC N23 Power/Other N24 VCC Power/Other N25 VCC Power/Other N26 VCC Power/Other N27 VCC Power/Other VCC N28 Power/Other N29 VCC Power/Other N30 VCC Power/Other Asynch CMOS P1 DPSLP# Input P2 SMI# Asynch CMOS Input Р3 INIT# Asynch CMOS Input P4 VSS Power/Other P5 RESERVED Р6 A04# Source Synch Input/Output Р7 VSS Power/Other Р8 VCC Power/Other VSS P23 Power/Other P24 VSS Power/Other P25 VSS Power/Other P26 VSS Power/Other VSS P27 Power/Other VSS P28 Power/Other P29 VSS Power/Other P30 VSS Power/Other R1 COMP3 Power/Other Input R2 VSS Power/Other R3 FERR#/PBE# Asynch CMOS Output R4 A08# Source Synch Input/Output R5 VSS Power/Other R6 ADSTB0# Input/Output Source Synch R7 VSS Power/Other Power/Other R8 VCC

Table 4-2. Numerical Land Assignment

		Significant	
Land #	Land Name	Signal Buffer Type	Direction
R23	VSS	Power/Other	
R24	VSS	Power/Other	
R25	VSS	Power/Other	
R26	VSS	Power/Other	
R27	VSS	Power/Other	
R28	VSS	Power/Other	
R29	VSS	Power/Other	
R30	VSS	Power/Other	
T1	COMP1	Power/Other	Input
T2	DPRSTP#	Asynch CMOS	Input
Т3	VSS	Power/Other	
T4	A11#	Source Synch	Input/Output
T5	A09#	Source Synch	Input/Output
T6	VSS	Power/Other	
T7	VSS	Power/Other	
T8	VCC	Power/Other	
T23	VCC	Power/Other	
T24	VCC	Power/Other	
T25	VCC	Power/Other	
T26	VCC	Power/Other	
T27	VCC	Power/Other	
T28	VCC	Power/Other	
T29	VCC	Power/Other	
T30	VCC	Power/Other	
U1	TDO_M	TAP	Output
U2	FC29	Power/Other	
U3	FC30	Power/Other	
U4	A13#	Source Synch	Input/Output
U5	A12#	Source Synch	Input/Output
U6	A10#	Source Synch	Input/Output
U7	VSS	Power/Other	
U8	VCC	Power/Other	
U23	VCC	Power/Other	
U24	VCC	Power/Other	
U25	VCC	Power/Other	
U26	VCC	Power/Other	
U27	VCC	Power/Other	
U28	VCC	Power/Other	
U29	VCC	Power/Other	
U30	VCC	Power/Other	
V1	MSID1	Power/Other	Output
V2	RESERVED		
V3	VSS	Power/Other	
V4	A15#	Source Synch	Input/Output
V5	A14#	Source Synch	Input/Output
V6	VSS	Power/Other	
	l	I.	

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
V7	VSS	Power/Other	
V8	VCC	Power/Other	
V23	VSS	Power/Other	
V24	VSS	Power/Other	
V25	VSS	Power/Other	
V26	VSS	Power/Other	
V27	VSS	Power/Other	
V28	VSS	Power/Other	
V29	VSS	Power/Other	
V30	VSS	Power/Other	
W1	MSID0	Power/Other	Output
W2	TDI_M	Power/Other	Input
W3	TESTHI1	Power/Other	Input
W4	VSS	Power/Other	
W5	A16#	Source Synch	Input/Output
W6	A18#	Source Synch	Input/Output
W7	VSS	Power/Other	
W8	VCC	Power/Other	
W23	VCC	Power/Other	
W24	VCC	Power/Other	
W25	VCC	Power/Other	
W26	VCC	Power/Other	
W27	VCC	Power/Other	
W28	VCC	Power/Other	
W29	VCC	Power/Other	
W30	VCC	Power/Other	
Y1	FCO/ BOOTSELECT	Power/Other	
Y2	VSS	Power/Other	
Y3	FC17	Power/Other	
Y4	A20#	Source Synch	Input/Output
Y5	VSS	Power/Other	
Y6	A19#	Source Synch	Input/Output
Y7	VSS	Power/Other	
Y8	VCC	Power/Other	
Y23	VCC	Power/Other	
Y24	VCC	Power/Other	
Y25	VCC	Power/Other	
Y26	VCC	Power/Other	
Y27	VCC	Power/Other	
Y28	VCC	Power/Other	
Y29	VCC	Power/Other	
Y30	VCC	Power/Other	

4.2 Alphabetical Signals Reference

Table 4-3. Signal Description (Sheet 1 of 10)

Name	Туре	Description
A[35:3]#	Input/ Output	A[35:3]# (Address) define a 2 ³⁶ -byte physical memory address space. In sub-phase 1 of the address phase, these signals transmit the address of a transaction. In sub-phase 2, these signals transmit transaction type information. These signals must connect the appropriate pins/lands of all agents on the processor FSB. A[35:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. On the active-to-inactive transition of RESET#, the processor samples a subset of the A[35:3]# signals to determine power-on configuration. See Section 6.1 for more details.
A20M#	Input	If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-MB boundary. Assertion of A20M# is only supported in real mode. A20M# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.
ADS#	Input/ Output	ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[35:3]# and REQ[4:0]# signals. All bus agents observe the ADS# activation to begin protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.
ADSTB[1:0]#	Input/ Output	Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling edges. Strobes are associated with signals as shown below. Signals Associated Strobe REQ[4:0]#, A[16:3]# ADSTB0# A[35:17]# ADSTB1#
BCLK[1:0]	Input	The differential pair BCLK (Bus Clock) determines the FSB frequency. All processor FSB agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLKO crossing V _{CROSS} .
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.

Datasheet Datasheet

Table 4-3. Signal Description (Sheet 2 of 10)

Name	Туре	Description
BPM[5:0]# BPMb[3:0]#	Input/ Output	BPM[5:0]# and BPMb[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[5:0]# and BPMb[3:0]# should connect the appropriate pins/lands of all processor FSB agents. BPM[3:0]# are associated with core 0. BPMb[3:0]# are associated with core 1. BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a processor output used by debug tools to determine processor debug readiness. BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is used by debug tools to request debug operation of the processor. These signals do not have on-die termination. Refer to Section 2.6.2 for termination requirements.
BPRI#	Input	BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor FSB. It must connect the appropriate pins/lands of all processor FSB agents. Observing BPRI# active (as asserted by the priority agent) causes all other agents to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by de-asserting BPRI#.
BRO#	Input/ Output	BRO# drives the BREQO# signal in the system and is used by the processor to request the bus. During power-on configuration this signal is sampled to determine the agent ID = 0. This signal does not have on-die termination and must be terminated.
BSEL[2:0]	Output	The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the processor input clock frequency. Table 2-15 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. For more information about these signals, including termination recommendations refer to Section 2.8.2.
COMP[3:0], COMP8	Analog	COMP[3:0] and COMP8 must be terminated to V_{SS} on the system board using precision resistors.

Table 4-3. Signal Description (Sheet 3 of 10)

Name	Туре	Description				
		D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the processor FSB agents, and must connect the appropriate pins/lands on all such agents. The data driver asserts DRDY# to indicate a valid data transfer.				
		D[63:0]# are quad- times in a common falling edge of both of 16 data signals of DSTBN#. The follow to data strobes and	clock period. D DSTBP[3:0]# a orrespond to a ving table shows	63:0]# are latched nd DSTBN[3:0]#. pair of one DSTBP#	d off the Each group f and one	
	Innut/	Quad-Pumped Signal Groups				
D[63:0]#	Input/ Output	Data Group	DSTBN#/ DSTBP#	DBI#		
		D[15:0]#	0	0		
		D[31:16]#	1	1		
		D[47:32]#	2	2		
		D[63:48]#	3	3		
		Furthermore, the DBI# signals determine the polarity of the data signals. Each group of 16 data signals corresponds to one DBI# signal. When the DBI# signal is active, the corresponding data group is inverted and therefore sampled active high.				
		DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the data bus is inverted. If more than half the data bits, within a 16-bit group, would have been asserted electrically low, the bus agent may invert the data bus signals for that particular sub-phase for that 16-bit group.				
	Input/	DBI[3:0] Assignm	nent To Data B	us		
DBI[3:0]#	Output	Bus Signal	Data Bus Signals			
		DBI3#	D[63:48]#			
		DBI2#	D[47:32]#			
		DBI1#	D[31:16]#			
		DBI0#	D[15:0]#			
DBR#	Output	DBR# (Debug Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect in the system. DBR# is not a processor signal.				
DBSY#	Input/ Output	DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the processor FSB to indicate that the data bus is in use. The data bus is released after DBSY# is de-asserted. This signal must connect the appropriate pins/lands on all processor FSB agents.				

Datasheet Datasheet

Table 4-3. Signal Description (Sheet 4 of 10)

ep state. To asserted. r state,		
ep state. To asserted. r state,		
DPRSTP#, when asserted on the platform, causes the processor to transition from the Deep Sleep State to the Deeper Sleep state. To return to the Deep Sleep State, DPRSTP# must be deasserted. Use of the DPRSTP# pin, and corresponding low power state, requires chipset support and may not be available on all platforms. NOTE:Some processors may not have the Deeper Sleep State enabled, refer to the Specification Update for specific sku and stepping guidance.		
DPSLP#, when asserted on the platform, causes the processor to transition from the Sleep State to the Deep Sleep state. To return to the Sleep State, DPSLP# must be deasserted. Use of the DPSLP# pin, and corresponding low power state, requires chipset support and may not be available on all platforms. NOTE: Some processors may not have the Deep Sleep State enabled, refer to the Specification Update for specific sku and stepping guidance.		
DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be de-asserted to insert idle clocks. This signal must connect the appropriate pins/lands of all processor FSB agents.		
63:0]#.		
53:0]#.		
this land is tBurst®om booting.		
ty with		

Table 4-3. Signal Description (Sheet 5 of 10)

Name	Туре	Description	
FERR#/PBE#	Output	FERR#/PBE# (floating point error/pending break event) is a multiplexed signal and its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating-point error and will be asserted when the processor detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/PBE# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. For additional information on the pending break event functionality, including the identification of support of the feature and enable/disable information, refer to volume 3 of the Intel Architecture Software Developer's Manual and the Intel Processor Identification and the CPUID Instruction application note.	
GTLREF[3:0]	Input	GTLREF[3:0] determine the signal reference level for GTL+ input signals. GTLREF is used by the GTL+ receivers to determine if a signal is a logical 0 or logical 1.	
HIT#	Input/ Output	HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Any FSB agent may assert both HIT# and	
HITM#	Input/ Output	HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.	
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by SHUTDOWN transaction on the processor FSB. This transaction may optionally be converted to an external error signal (e.g., NM by system core logic. The processor will keep IERR# asserted un the assertion of RESET#. This signal does not have on-die termination. Refer to Section 2.6.2 for termination requirements.	
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is de-asserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.	
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requ during INIT# assertion. INIT# is an asynchronous signal and connect the appropriate pins/lands of all processor FSB agen If INIT# is sampled active on the active to inactive transition RESET#, then the processor executes its Built-in Self-Test (B	

Datasheet Datasheet

Table 4-3. Signal Description (Sheet 6 of 10)

Name	Туре	Description
ITP_CLK[1:0]	Input	ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where no debug port is implemented on the system board. ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port implemented on an interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the system. These are not processor signals.
LINT[1:0]	Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins/lands of all APIC Bus agents. When the APIC is disabled, the LINTO signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous. Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these signals as LINT[1:0] is the default configuration.
LOCK#	Input/ Output	LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins/lands of all processor FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the processor FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the processor FSB throughout the bus locked operation and ensure the atomicity of lock.
MSID[1:0]	Output	On a processor these signals are not connected on the package (they are floating). As an alternative to MSID, Intel has implemented the Power Segment Identifier (PSID) to report the maximum Thermal Design Power of the processor. Refer to Section 2.5 for additional information regarding PSID.
PECI	Input/ Output	PECI is a proprietary one-wire bus interface. See Chapter 5.3 for details.
PROCHOT#	Input/ Output	As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled. The TCC will remain active until the system de-asserts PROCHOT#. See Section 5.2.4 for more details.

Table 4-3. Signal Description (Sheet 7 of 10)

Name	Туре	Description
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation.
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins/lands of all processor FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTBO#.
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least one millisecond after V _{CC} and BCLK have reached their proper specifications. On observing active RESET#, all FSB agents will de-assert their outputs within two clocks. RESET# must not be kept asserted for more than 10 ms while PWRGOOD is asserted. A number of bus signals are sampled at the active-to-inactive transition of RESET# for power-on configuration. These configuration options are described in the Section 6.1. This signal does not have on-die termination and must be terminated on the system board.
RESERVED		All RESERVED lands must remain unconnected. Connection of these lands to V_{CC} , V_{SS} , V_{TT} , or to any other signal (including each other) can result in component malfunction or incompatibility with future processors.
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins/lands of all processor FSB agents.
SKTOCC#	Output	SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System board designers may use this signal to determine if the processor is present.

Datasheet Datasheet

Table 4-3. Signal Description (Sheet 8 of 10)

Name	Туре	Description
SLP#	Input	SLP# (Sleep), when asserted in Extended Stop Grant or Stop Grant state, causes the processor to enter the Sleep state. In the Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Extended Stop Grant or Stop Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state. Use of the SLP# pin, and corresponding low power state, requires chipset support and may not be available on all platforms. NOTE: Some processors may not have the Sleep State enabled, refer to the Specification Update for specific sku and stepping guidance.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the de-assertion of RESET#, the processor will tri-state its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
тск	Input	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).
TDI, TDI_M	Input	TDI and TDI_M (Test Data In) transfers serial test data into the processor. TDI and TDI_M provide the serial input needed for JTAG specification support. TDI connects to core 0. TDI_M connects to core 1.
TDO, TDO_M	Output	TDO and TDO_M (Test Data Out) transfers serial test data out of the processor. TDO and TDO_M provide the serial output needed for JTAG specification support. TDO connects to core 1. TDO_M connects to core 0.
TESTHI[10,7:0]	Input	TESTHI[10,7:0] must be connected to the processor's appropriate power source (refer to VTT_OUT_LEFT and VTT_OUT_RIGHT signal description) through a resistor for proper processor operation. See Section 2.4 for more details.

Table 4-3. Signal Description (Sheet 9 of 10)

Name	Туре	Description	
THERMTRIP#	Output	In the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature approximately 20 °C above the maximum $T_{\rm C}$. Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction temperature has reached a level beyond where permanent silicon damage may occur. Upon assertion of THERMTRIP#, the processor will shut off its internal clocks (thus, halting program execution) in an attempt to reduce the processor junction temperature. To protect the processor, its core voltage ($V_{\rm CC}$) must be removed following the assertion of THERMTRIP#. Driving of the THERMTRIP# signal is enabled within 10 μs of the assertion of PWRGOOD (provided $V_{\rm TT}$ and $V_{\rm CC}$ are asserted) and is disabled on de-assertion of PWRGOOD (if $V_{\rm TT}$ or $V_{\rm CC}$ are not valid, THERMTRIP# may also be disabled). Once activated, THERMTRIP# remains latched until PWRGOOD, $V_{\rm TT}$ or $V_{\rm CC}$ is deasserted. While the de-assertion of the PWRGOOD, $V_{\rm TT}$ or $V_{\rm CC}$ signal will de-assert THERMTRIP#, if the processor's junction temperature remains at or above the trip level, THERMTRIP# will again be asserted within 10 μs of the assertion of PWRGOOD (provided $V_{\rm TT}$ and $V_{\rm CC}$ are valid).	
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.	
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins/lands of all FSB agents.	
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRS must be driven low during power on Reset.	
VCC	Input	VCC are the power pins for the processor. The voltage supplied to these pins is determined by the VID[6:0] pins.	
VCCA	Input	VCCA provides isolated power for internal PLLs on previous generation processors. It may be left as a No-Connect on boards supporting the processor.	
VCCIOPLL	Input	VCCIOPLL provides isolated power for internal processor FSB PLLs on previous generation processors. It may be left as a No-Connect on boards supporting the processor.	
VCCPLL	Input	VCCPLL provides isolated power for internal processor FSB PLLs.	
VCC_SENSE	Output	VCC_SENSE is an isolated low impedance connection to processor core power (V_{CC}). It can be used to sense or measure voltage near the silicon with little noise.	
VCC_MB_ REGULATION	Output	This land is provided as a voltage regulator feedback sense por for V _{CC} . It is connected internally in the processor package to sense point land U27 as described in the <i>Voltage Regulator-De (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket.</i>	

Datasheet Datasheet

Table 4-3. Signal Description (Sheet 10 of 10)

Name	Туре	Description	
VID[7:0]	Output	The VID (Voltage ID) signals are used to support automatic selection of power supply voltages (V_{CC}). Refer to the Voltage Regulator Design Guide for more information. The voltage supply for these signals must be valid before the VR can supply V_{CC} to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID signals becomes valid. The VID signals are needed to support the processor voltage specification variations. See Table 2-1 for definitions of these signals. The VR must supply the voltage that is requested by the signals, or disable itself.	
VID_SELECT	Output	This land is tied high on the processor package and is used by the VR to choose the proper VID table. Refer to the Voltage Regulator Design Guide for more information.	
VRDSEL	Input	This input should be left as a no connect in order for the processor to boot. The processor will not boot on legacy platforms where this land is connected to V _{SS} .	
VSS	Input	VSS are the ground pins for the processor and should be connected to the system ground plane.	
VSSA	Input	VSSA provides isolated ground for internal PLLs on previous generation processors. It may be left as a No-Connect on boards supporting the processor.	
VSS_SENSE	Output	VSS_SENSE is an isolated low impedance connection to processor core V_{SS} . It can be used to sense or measure ground near the silicon with little noise.	
VSS_MB_ REGULATION	Output	This land is provided as a voltage regulator feedback sense point for V_{SS} . It is connected internally in the processor package to the sense point land V27 as described in the Voltage Regulator Design Guide.	
VTT		Miscellaneous voltage supply.	
VTT_OUT_LEFT VTT_OUT_RIGHT	Output	The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to provide a voltage supply for some signals that require termination to V_{TT} on the motherboard.	
VTT_SEL	Output	The VTT_SEL signal is used to select the correct V_{TT} voltage level for the processor. This land is connected internally in the package to V_{SS} .	

5 Thermal Specifications and Design Considerations

5.1 Processor Thermal Specifications

The processor requires a thermal solution to maintain temperatures within the operating limits as set forth in Section 5.1.1. Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components within the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation.

A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions can include active or passive heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system level thermal solutions may consist of system fans combined with ducting and venting.

For more information on designing a component level thermal solution, refer to the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2).

Note:

The boxed processor will ship with a component thermal solution. Refer to Chapter 7 for details on the boxed processor.

5.1.1 Thermal Specifications

To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor remains within the minimum and maximum case temperature (T_C) specifications when operating at or below the Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not designed to provide this level of thermal capability may affect the long-term reliability of the processor and system. For more details on thermal solution design, refer to the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2).

The processor uses a methodology for managing processor temperatures which is intended to support acoustic noise reduction through fan speed control. Selection of the appropriate fan speed is based on the relative temperature data reported by the processor's Platform Environment Control Interface (PECI) bus as described in Section 5.3. If the value reported via PECI is less than $T_{\rm CONTROL}$, then the case temperature is permitted to exceed the Thermal Profile. If the value reported via PECI is greater than or equal to $T_{\rm CONTROL}$, then the processor case temperature must remain at or below the temperature as specified by the thermal profile. The temperature reported over PECI is always a negative value and represents a delta below the onset of thermal control circuit (TCC) activation, as indicated by PROCHOT# (see Section 5.2). Systems that implement fan speed control must be designed to take these conditions in to account. Systems that do not alter the fan speed only need to ensure the case temperature meets the thermal profile specifications.

In order to determine a processor's case temperature specification based on the thermal profile, it is necessary to accurately measure processor power dissipation. Intel has developed a methodology for accurate power measurement that correlates to Intel test temperature and voltage conditions. Refer to the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2) for the details of this methodology.

The case temperature is defined at the geometric top center of the processor. Analysis indicates that real applications are unlikely to cause the processor to consume maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the Thermal Design Power (TDP) indicated in Table 5-1 instead of the maximum processor power consumption. The Thermal Monitor feature is designed to protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained periods of time. For more details on the usage of this feature, refer to Section 5.2. In all cases the Thermal Monitor or Thermal Monitor 2 feature must be enabled for the processor to remain within specification.

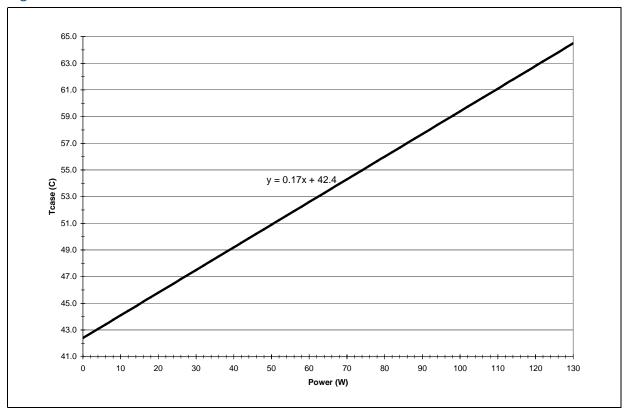
Table 5-1. Processor Thermal Specifications

Processor Number	Core Frequency (GHz)	Thermal Design Power (W) 2, 3	Extended HALT Power (W) ¹	775_VR_CONFIG _05 Guidance ⁴		Maximum T _C (°C)	Notes
QX9650	3.00	130	16	775_VR_CONFIG_ 05B	5	See Table 5-2 and Figure 5-1	

NOTES:

- 1. Specification is at 37°C Tc and minimum voltage loadline. Specification is ensured by design characterization and not 100% tested.
- 2. Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not the maximum power that the processor can dissipate.
- 3. This table shows the maximum TDP for a given frequency range. Individual processors may have a lower TDP. Therefore, the maximum $T_{\rm C}$ will vary depending on the TDP of the individual processor. Refer to thermal profile figure and associated table for the allowed combinations of power and $T_{\rm C}$.
- 4. 775_VR_CONFIG_05B guidelines provide a design target for meeting future thermal requirements.

Table 5-2. Thermal Profile

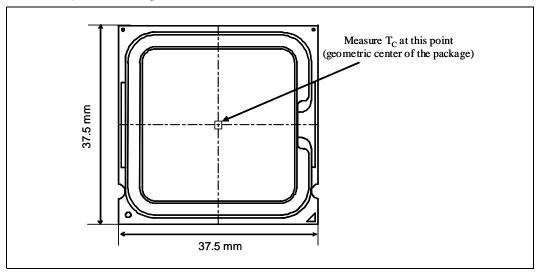

Power	Maximum				
(W)	Tc (°C)				
0	42.4				
2	42.7				
4	43.1				
6	43.4				
8	43.8				
10	44.1				
12	44.4				
14	44.8				
16	45.1				
18	45.5				
20	45.8				
22	46.1				
24	46.5				
26	46.8				
28	47.2				
30	47.5				
32	47.8				

Power	Maximum				
(W)	Tc (°C)				
34	48.2				
36	48.5				
38	48.9				
40	49.2				
42	49.5				
44	49.9				
46	50.2				
48	50.6				
50	50.9				
52	51.2				
54	51.6				
56	51.9				
58	52.3				
60	52.6				
62	52.9				
64	53.3				
66	53.6				

Power (W)	Maximum Tc (°C)			
68	54.0			
70	54.3			
72	54.6			
74	55.0			
76	55.3			
78	55.7			
80	56.0			
82	56.3			
84	56.7			
86	57.0			
88	57.4			
90	57.7			
92	58.0			
94	58.4			
96	58.7			
98	59.1			
100	59.4			

Maximum				
Tc (°C)				
59.7				
60.1				
60.4				
60.8				
61.1				
61.4				
61.8				
62.1				
62.5				
62.8				
63.1				
63.5				
63.8				
64.2				
64.5				

Figure 5-1. Thermal Profile



5.1.2 Thermal Metrology

The maximum and minimum case temperatures ($T_{\rm C}$) for the processor is specified in Table 5-1. This temperature specification is meant to help ensure proper operation of the processor. Figure 5-2 illustrates where Intel recommends $T_{\rm C}$ thermal measurements should be made. For detailed guidelines on temperature measurement methodology, refer to the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2).

Figure 5-2. Case Temperature (T_C) Measurement Location

5.2 Processor Thermal Features

5.2.1 Thermal Monitor

The Thermal Monitor feature helps control the processor temperature by activating the thermal control circuit (TCC) when the processor silicon reaches its maximum operating temperature. The TCC reduces processor power consumption by modulating (starting and stopping) the internal processor core clocks. **The Thermal Monitor feature must be enabled for the processor to be operating within specifications.** The temperature at which Thermal Monitor activates the thermal control circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle specific to the processor (typically 30-50%). Clocks often will not be off for more than 3.0 microseconds when the TCC is active. Cycle times are processor speed dependent and will decrease as processor core frequencies increase. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief

periods of TCC activation is expected to be so minor that it would be immeasurable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and in some cases may result in a $T_{\rm C}$ that exceeds the specified maximum temperature and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under-designed may not be capable of cooling the processor even when the TCC is active continuously. Refer to the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2) for information on designing a thermal solution.

The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and cannot be modified. The Thermal Monitor does not require any additional hardware, software drivers, or interrupt handling routines.

5.2.2 Thermal Monitor 2

The processor also supports an additional power reduction capability known as Thermal Monitor 2. This mechanism provides an efficient means for limiting the processor temperature by reducing the power consumption within the processor.

When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust its operating frequency (via the bus multiplier) and input voltage (via the VID signals). This combination of reduced frequency and VID results in a reduction to the processor power consumption.

A processor enabled for Thermal Monitor 2 includes two operating points, each consisting of a specific operating frequency and voltage. The first operating point represents the normal operating condition for the processor. Under this condition, the core-frequency-to-FSB multiple utilized by the processor is that contained in the CLK_GEYSIII_STAT MSR and the VID is that specified in Table 2-3. These parameters represent normal system operation.

The second operating point consists of both a lower operating frequency and voltage. When the TCC is activated, the processor automatically transitions to the new frequency. This transition occurs very rapidly (on the order of 5 μ s). During the frequency transition, the processor is unable to service any bus requests, and consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and kept pending until the processor resumes operation at the new frequency.

Once the new operating frequency is engaged, the processor will transition to the new core operating voltage by issuing a new VID code to the voltage regulator. The voltage regulator must support dynamic VID steps in order to support Thermal Monitor 2. During the voltage change, it will be necessary to transition through multiple VID codes to reach the target operating voltage. Each step will likely be one VID table entry (see Table 2-3). The processor continues to execute instructions during the voltage transition. Operation at the lower voltage reduces the power consumption of the processor.

A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the operating frequency and voltage transition back to the normal system operating point. Transition of the VID code will occur first, in order to ensure proper operation once the processor reaches its normal operating frequency. Refer to Figure 5-3 for an illustration of this ordering.

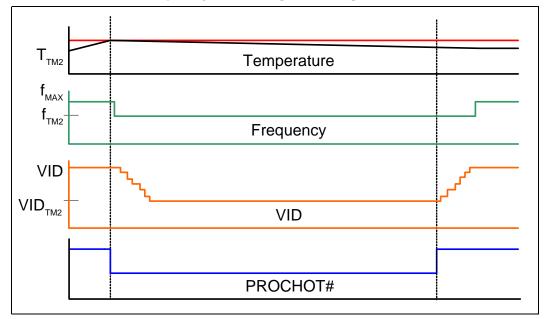


Figure 5-3. Thermal Monitor 2 Frequency and Voltage Ordering

The PROCHOT# signal is asserted when a high temperature situation is detected, regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.

It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on demand mode. The Thermal Monitor TCC, however, can be activated through the use of the on demand mode.

5.2.3 On-Demand Mode

The processor provides an auxiliary mechanism that allows system software to force the processor to reduce its power consumption. This mechanism is referred to as "On-Demand" mode and is distinct from the Thermal Monitor feature. On-Demand mode is intended as a means to reduce system level power consumption. Systems using the processor must not rely on software usage of this mechanism to limit the processor temperature.

If bit 4 of the ACPI P_CNT Control Register (located in the processor IA32_THERM_CONTROL MSR) is written to a '1', the processor will immediately reduce its power consumption via modulation (starting and stopping) of the internal core clock, independent of the processor temperature. When using On-Demand mode, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI P_CNT Control Register. In On-Demand mode, the duty cycle can be programmed from 12.5% on/87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be used in conjunction with the Thermal Monitor. If the system tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty cycle of the TCC will override the duty cycle selected by the On-Demand mode.

5.2.4 PROCHOT# Signal

An external signal, PROCHOT# (processor hot), is asserted when the processor core temperature has reached its maximum operating temperature. If the Thermal Monitor is enabled (note that the Thermal Monitor must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.

PROCHOT# is a bi-directional signal. As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that one or both cores has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled, for both cores. The TCC will remain active until the system de-asserts PROCHOT#.

Note:

PROCHOT# will not be asserted (as an output) or observed (as an input) when the processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low-power states, hence the thermal solution must be designed to ensure the processor remains within specification. If the processor enters one of the above low-power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low-power state and the processor DTS temperature drops below the thermal trip point.

PROCHOT# allows for some protection of various components from over-temperature situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor (either core) has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss. Refer to the Voltage Regulator Design Guide for details on implementing the bi-directional PROCHOT# feature.

5.2.5 THERMTRIP# Signal

Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in Table 4-3). At this point, the FSB signal THERMTRIP# will go active and stay active as described in Table 4-3. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles.

5.3 Platform Environment Control Interface (PECI)

5.3.1 Introduction

PECI offers an interface for thermal monitoring of Intel processor and chipset components. It uses a single wire, thus alleviating routing congestion issues. PECI uses CRC checking on the host side to ensure reliable transfers between the host and client devices. Also, data transfer speeds across the PECI interface are negotiable within a wide range (2Kbps to 2Mbps). The PECI interface on the processor is disabled by default and must be enabled through BIOS. More information can be found in the *Platform Environment Control Interface (PECI) Specification*.

5.3.1.1 T_{CONTROL} and TCC activation on PECI-Based Systems

Fan speed control solutions based on PECI utilize a $T_{CONTROL}$ value stored in the processor IA32_TEMPERATURE_TARGET MSR. The $T_{CONTROL}$ MSR uses the same offset temperature format as PECI though it contains no sign bit. Thermal management devices should infer the $T_{CONTROL}$ value as negative. Thermal management algorithms should utilize the relative temperature value delivered over PECI in conjunction with the $T_{CONTROL}$ MSR value to control or optimize fan speeds. Figure 5-4 shows a conceptual fan control diagram using PECI temperatures.

The relative temperature value reported over PECI represents the delta below the onset of thermal control circuit (TCC) activation as indicated by PROCHOT# assertions. As the temperature approaches TCC activation, the PECI value approaches zero. TCC activates at a PECI count of zero.

Figure 5-4. Conceptual Fan Control Diagram on PECI-Based Platforms

5.3.2 PECI Specifications

5.3.2.1 PECI Device Address

The PECI register resides at address 30h.

5.3.2.2 PECI Command Support

PECI command support is covered in detail in the Platform Environment Control Interface Specification. Refer to this document for details on supported PECI command function and codes.

5.3.2.3 PECI Fault Handling Requirements

PECI is largely a fault tolerant interface, including noise immunity and error checking improvements over other comparable industry standard interfaces. The PECI client is as reliable as the device that it is embedded in, and thus given operating conditions that fall under the specification, the PECI will always respond to requests and the protocol itself can be relied upon to detect any transmission failures. There are, however, certain scenarios where the PECI is know to be unresponsive.

Prior to a power on RESET# and during RESET# assertion, PECI is not assured to provide reliable thermal data. System designs should implement a default power-on condition that ensures proper processor operation during the time frame when reliable data is not available via PECI.

To protect platforms from potential operational or safety issues due to an abnormal condition on PECI, the Host controller should take action to protect the system from possible damage. It is recommended that the PECI host controller take appropriate action to protect the client processor device if valid temperature readings have not been obtained in response to three consecutive GetTemp()s or for a one second time interval. The host controller may also implement an alert to software in the event of a critical or continuous fault condition.

5.3.2.4 PECI GetTemp0() Error Code Support

The error codes supported for the processor GetTemp() command are listed in Table 5-3.

Table 5-3. GetTemp0() Error Codes

Error Code	Description
8000h	General sensor error
8002h	Sensor is operational, but has detected a temperature below its operational range (underflow)

6 Features

6.1 Power-On Configuration Options

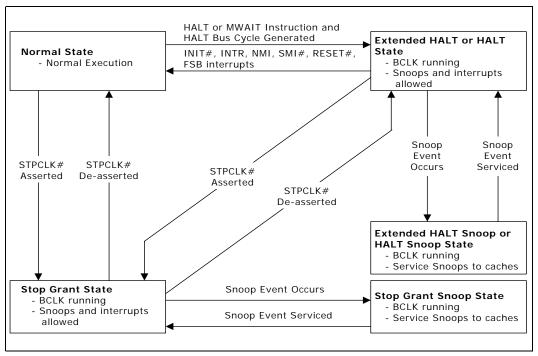
Several configuration options can be configured by hardware. The processor samples the hardware configuration at reset, on the active-to-inactive transition of RESET#. For specifications on these options, refer to Table 6-1.

The sampled information configures the processor for subsequent operation. These configuration options cannot be changed except by another reset. All resets reconfigure the processor; for configuration purposes, the processor does not distinguish between a "warm" reset and a "power-on" reset.

Table 6-1. Power-On Configuration Option Signals

Configuration Option	Signal ^{1,2}
Output tristate	SMI#
Execute BIST	A3#
Disable dynamic bus parking	A25#
Symmetric agent arbitration ID	BRO#
RESERVED	A[24:4]#, A[35:26]#

NOTE:


- 1. Asserting this signal during RESET# will select the corresponding option.
- Address signals not identified in this table as configuration options should not be asserted during RESET#.
- Disabling of any of the cores within a processor must be handled by configuring the EXT_CONFIG Model Specific Register (MSR). This MSR allows for the disabling of a single core per die within the processor package.

6.2 Clock Control and Low Power States

The processor allows the use of AutoHALT and Stop-Grant states to reduce power consumption by stopping the clock to internal sections of the processor, depending on each particular state. See Figure 6-1 for a visual representation of the processor low power states.

Figure 6-1. Processor Low Power State Machine

6.2.1 Normal State

This is the normal operating state for the processor.

6.2.2 HALT and Extended HALT Powerdown States

The processor supports the HALT or Extended HALT powerdown state. The Extended HALT Powerdown state must be configured and enabled via the BIOS for the processor to remain within specification.

The Extended HALT state is a lower power state as compared to the Stop Grant State.

If Extended HALT is not enabled, the default Powerdown state entered will be HALT. Refer to the sections below for details about the HALT and Extended HALT states.

6.2.2.1 HALT Powerdown State

HALT is a low power state entered when all the processor cores have executed the HALT or MWAIT instructions. When one of the processor cores executes the HALT instruction, that processor core is halted, however, the other processor continues normal operation. The halted core will transition to the Normal state upon the occurrence of SMI#, INIT#, or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize itself.

The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or the HALT Power Down state. See the *Intel Architecture Software Developer's Manual, Volume 3B: System Programming Guide, Part 2* for more information.

The system can generate a STPCLK# while the processor is in the HALT Power Down state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in HALT Power Down state, the processor will process bus snoops.

6.2.2.2 Extended HALT Powerdown State

Extended HALT is a low power state entered when all processor cores have executed the HALT or MWAIT instructions and Extended HALT has been enabled via the BIOS. When one of the processor cores executes the HALT instruction, that logical processor is halted; however, the other processor continues normal operation. The Extended HALT Powerdown must be enabled via the BIOS for the processor to remain within its specification.

The processor will automatically transition to a lower frequency and voltage operating point before entering the Extended HALT state. Note that the processor FSB frequency is not altered; only the internal core frequency is changed. When entering the low power state, the processor will first switch to the lower bus ratio and then transition to the lower VID.

While in Extended HALT state, the processor will process bus snoops.

The processor exits the Extended HALT state when a break event occurs. When the processor exits the Extended HALT state, it will first transition the VID to the original value and then change the bus ratio back to the original value.

6.2.3 Stop Grant State

When the STPCLK# signal is asserted, the Stop Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.

Since the GTL+ signals receive power from the FSB, these signals should not be driven (allowing the level to return to V_{TT}) for minimum power drawn by the termination resistors in this state. In addition, all other input signals on the FSB should be driven to the inactive state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the STPCLK# signal.

A transition to the Grant Snoop state will occur when the processor detects a snoop on the FSB (see Section 6.2.4).

While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal State. Only one occurrence of each event will be recognized upon return to the Normal state.

While in Stop-Grant state, the processor will process a FSB snoop.

6.2.4 Extended HALT Snoop or HALT Snoop State, Stop Grant Snoop State

The Extended HALT Snoop State is used in conjunction with the Extended HALT state. If Extended HALT state is not enabled in the BIOS, the default Snoop State entered will be the HALT Snoop State. Refer to the following sections for details on HALT Snoop State, Grant Snoop State and Extended HALT Snoop State.

6.2.4.1 HALT Snoop State, Stop Grant Snoop State

The processor will respond to snoop transactions on the FSB while in Stop-Grant state or in HALT Power Down state. During a snoop transaction, the processor enters the HALT Snoop State: Stop Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB). After the snoop is serviced, the processor will return to the Stop Grant state or HALT Power Down state, as appropriate.

6.2.4.2 Extended HALT Snoop State

The Extended HALT Snoop State is the default Snoop State when the Extended HALT state is enabled via the BIOS. The processor will remain in the lower bus ratio and VID operating point of the Extended HALT state.

While in the Extended HALT Snoop State, snoops are handled the same way as in the HALT Snoop State. After the snoop is serviced the processor will return to the Extended HALT state.

6.2.5 Enhanced Intel SpeedStep® Technology

The processor supports Enhanced Intel SpeedStep Technology. This technology enables the processor to switch between frequency and voltage points, which may result in platform power savings. In order to support this technology, the system must support dynamic VID transitions. Switching between voltage/frequency states is software controlled.

Note:

Not all processors are capable of supporting Enhanced Intel SpeedStep Technology. More details on which processor frequencies will support this feature will be provided in future releases of the Specification Update.

Enhanced Intel SpeedStep Technology is a technology that creates processor performance states (P states). P states are power consumption and capability states within the Normal state as shown in Figure 6-1. Enhanced Intel SpeedStep Technology enables real-time dynamic switching between frequency and voltage points. It alters the performance of the processor by changing the bus to core frequency ratio and voltage. This allows the processor to run at different core frequencies and voltages to best serve the performance and power requirements of the processor and system. Note that the front side bus is not altered; only the internal core frequency is changed. To run at reduced power consumption, the voltage is altered in step with the bus ratio.

The following are key features of Enhanced Intel SpeedStep Technology:

- Voltage/Frequency selection is software controlled by writing to processor MSRs (Model Specific Registers); thus, eliminating chipset dependency.
 - If the target frequency is higher than the current frequency, Vcc is incremented in steps (+12.5 mV) by placing a new value on the VID signals after which the processor shifts to the new frequency. Note that the top frequency for the processor can not be exceeded.
 - If the target frequency is lower than the current frequency, the processor shifts to the new frequency and Vcc is then decremented in steps (-12.5 mV) by changing the target VID through the VID signals.

§

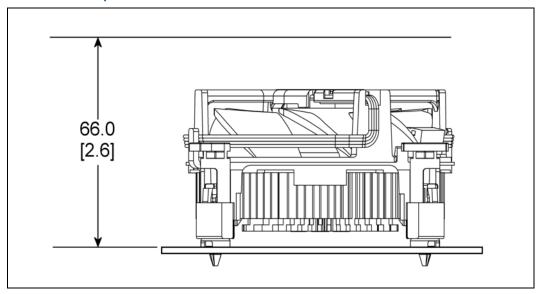
7 Boxed Processor Specifications

7.1 Introduction

The processor will also be offered as an Intel boxed processor. Intel boxed processors are intended for system integrators who build systems from baseboards and standard components. The boxed processor will be supplied with a cooling solution. This chapter documents baseboard and system requirements for the cooling solution that will be supplied with the boxed processor. This chapter is particularly important for OEMs that manufacture baseboards for system integrators.

Note: Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and

inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed


processor.

Note: Drawings in this section reflect only the specifications on the Intel boxed processor

product. These dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system designers' responsibility to consider their proprietary cooling solution when designing to the required keep-out zone on their system platforms and chassis. Refer to the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2) for further guidance. Contact your local Intel Sales

Representative for this document.

Figure 7-1. Mechanical Representation of the Boxed Processor

NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.

7.2 Mechanical Specifications

7.2.1 Boxed Processor Cooling Solution Dimensions

This section documents the mechanical specifications of the boxed processor. The boxed processor will be shipped with an unattached fan heatsink. Figure 7-1 shows a mechanical representation of the boxed processor.

Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The physical space requirements and dimensions for the boxed processor with assembled fan heatsink are shown in Figure 7-2 (Side View), and Figure 7-3 (Top View). The airspace requirements for the boxed processor fan heatsink must also be incorporated into new baseboard and system designs. Airspace requirements are shown in Figure 7-7 and Figure 7-8. Note that some figures have centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.

Figure 7-2. Space Requirements for the Boxed Processor (side view)

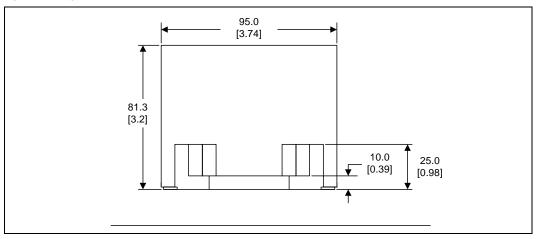
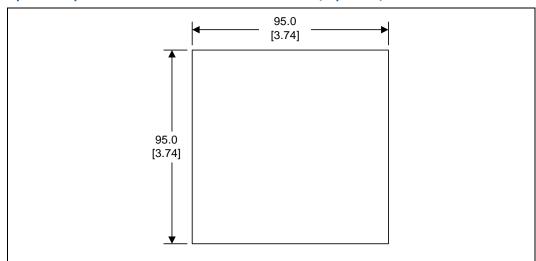
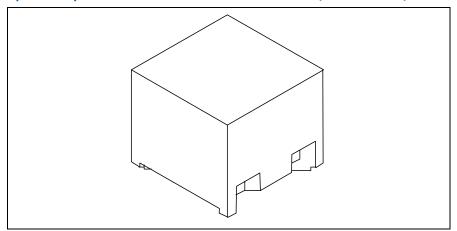



Figure 7-3. Space Requirements for the Boxed Processor (top view)



NOTES:

 Diagram does not show the attached hardware for the clip design and is provided only as a mechanical representation.

Figure 7-4. Space Requirements for the Boxed Processor (overall view)

7.2.2 Boxed Processor Fan Heatsink Weight

The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5 and the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2) for details on the processor weight and heatsink requirements.

7.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly

The boxed processor thermal solution requires a heatsink attach clip assembly, to secure the processor and fan heatsink in the baseboard socket. The boxed processor will ship with the heatsink attach clip assembly.

7.3 Electrical Requirements

7.3.1 Fan Heatsink Power Supply

The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable will be shipped with the boxed processor to draw power from a power header on the baseboard. The power cable connector and pinout are shown in Figure 7-5. Baseboards must provide a matched power header to support the boxed processor. Table 7-1 contains specifications for the input and output signals at the fan heatsink connector.

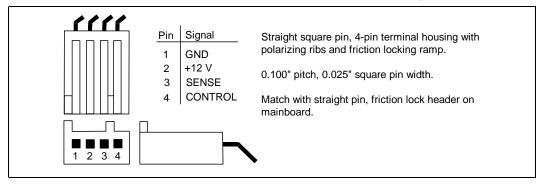
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides V_{OH} to match the system board-mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should be tied to GND.

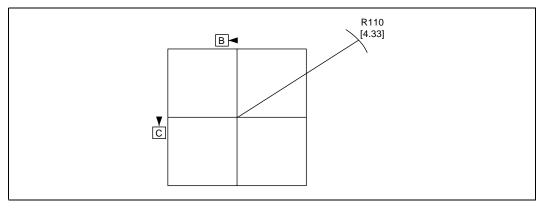
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the connector labeled as CONTROL.

The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and does not support variable voltage control or 3-pin PWM control.

The power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it. The power header identification and location should be documented in the platform documentation, or on the system board itself. Figure 7-6 shows the location of the fan power connector relative to the processor socket. The baseboard power header should be positioned within 110 mm [4.33 inches] from the center of the processor socket.

Figure 7-5. Boxed Processor Fan Heatsink Power Cable Connector Description




Table 7-1. Fan Heatsink Power and Signal Specifications

Description	Min	Тур	Max	Unit	Notes
+12 V: 12 volt fan power supply	11.4	12	12.6	V	-
IC: - Maximum fan steady-state current draw - Average fan steady-state current draw - Maximum fan start-up current draw - Fan start-up current draw maximum duration	1111	1.2 0.5 2.2 1.0		A A A Second	-
SENSE: SENSE frequency		2	-	pulses per fan revolution	1
CONTROL	21	25	28	kHz	2, 3

NOTES:

- 1. Baseboard should pull this pin up to 5 V with a resistor.
- 2. Open drain type, pulse width modulated.
- 3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.

Figure 7-6. Baseboard Power Header Placement Relative to Processor Socket

7.4 Thermal Specifications

This section describes the cooling requirements of the fan heatsink solution used by the boxed processor.

7.4.1 Boxed Processor Cooling Requirements

The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's temperature specification is also a function of the thermal design of the entire system, and ultimately the responsibility of the system integrator. The processor temperature specification is in Chapter 5. The boxed processor fan heatsink is able to keep the processor temperature within the specifications (see Table 5-1) in chassis that provide good thermal management. For the boxed processor fan heatsink to operate properly, it is critical that the airflow provided to the fan heatsink is unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the fan heatsink. Airspace is required around the fan to ensure that the airflow through the fan heatsink is not blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and decreases fan life. Figure 7-7 and Figure 7-8 illustrate an acceptable airspace clearance for the fan heatsink. The air temperature entering the fan should be kept below 38 °C. Again, meeting the processor's temperature specification is the responsibility of the system integrator.

Figure 7-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)

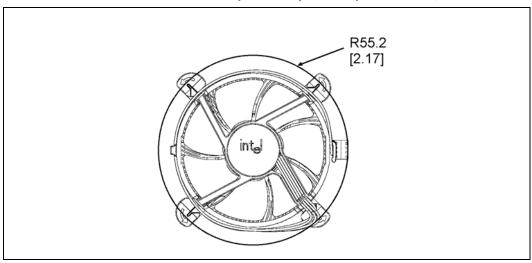
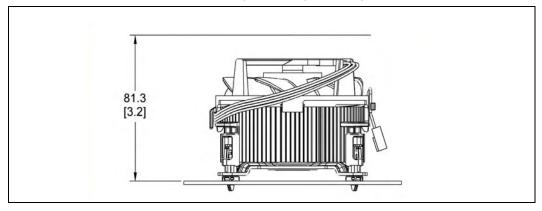



Figure 7-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)

7.4.2 Variable Speed Fan

If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin motherboard header it will operate as follows:

The boxed processor fan will operate at different speeds over a short range of internal chassis temperatures. This allows the processor fan to operate at a lower speed and noise level, while internal chassis temperatures are low. If internal chassis temperature increases beyond a lower set point, the fan speed will rise linearly with the internal temperature until the higher set point is reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan noise levels. Systems should be designed to provide adequate air around the boxed processor fan heatsink that remains cooler then lower set point. These set points, represented in Figure 7-9 and Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The internal chassis temperature should be kept below 38 °C. Meeting the processor's temperature specification (see Chapter 5) is the responsibility of the system integrator.

The motherboard must supply a constant +12 V to the processor's power header to ensure proper operation of the variable speed fan for the boxed processor. Refer to Table 7-1 for the specific requirements.

Figure 7-9. Boxed Processor Fan Heatsink Set Points

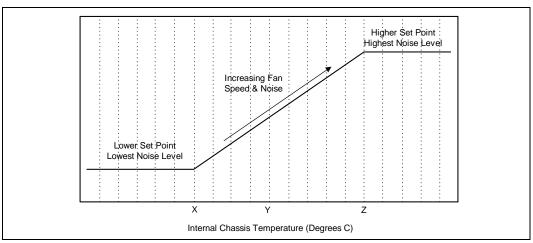


Table 7-2. Fan Heatsink Power and Signal Specifications

Boxed Processor Fan Heatsink Set Point (°C)	Boxed Processor Fan Speed	Notes
X ≤ 30	When the internal chassis temperature is below or equal to this set point, the fan operates at its lowest speed. Recommended maximum internal chassis temperature for nominal operating environment.	1
Y = 35	When the internal chassis temperature is at this point, the fan operates between its lowest and highest speeds. Recommended maximum internal chassis temperature for worst-case operating environment.	-
Z ≥ 39	When the internal chassis temperature is above or equal to this set point, the fan operates at its highest speed.	-

NOTES:

^{1.} Set point variance is approximately $\pm 1\ ^{\circ}\text{C}$ from fan heatsink to fan heatsink.

If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin motherboard header and the motherboard is designed with a fan speed controller with PWM output (CONTROL see Table 7-1) and remote thermal diode measurement capability the boxed processor will operate as follows:

As processor power has increased the required thermal solutions have generated increasingly more noise. Intel has added an option to the boxed processor that allows system integrators to have a quieter system in the most common usage.

The 4th wire PWM solution provides better control over chassis acoustics. This is achieved by more accurate measurement of processor die temperature through the processor's Digital Thermal Sensors (DTS) and PECI. Fan RPM is modulated through the use of an ASIC located on the motherboard that sends out a PWM control signal to the 4th pin of the connector labeled as CONTROL. The fan speed is based on actual processor temperature instead of internal ambient chassis temperatures.

If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard processor fan header it will default back to a thermistor controlled mode, allowing compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode, the fan RPM is automatically varied based on the Tinlet temperature measured by a thermistor located at the fan inlet.

For more details on specific motherboard requirements for 4-wire based fan speed control see the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2).

7.5 Boxed Intel[®] Core[™]2 Extreme Processor Specifications

This section documents the mechanical specifications of the Boxed Intel[®] Core[™]2 Extreme processor. The boxed processor will be shipped with an unattached fan heatsink. Figure 7-10 shows a mechanical representation of the boxed processor.

Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The physical space requirements and dimensions for the boxed processor with assembled fan heatsink are shown in Figure 7-3 (top view), and Figure 7-4 (side view). The airspace requirements for the boxed processor fan heatsink must also be incorporated into new baseboard and system designs. Airspace requirements are shown in Figure 7-11 and Figure 7-12. Note that some figures have centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.

Note:

The Boxed Intel[®] Core[™]2 Extreme processor cooling solution violates the boxed processor keep out zones. This is done intentionally, and with the understanding that Extreme Edition systems will be integrated into larger capacity chassis.

135.0 [5.3]

79.9

[3.1]

39.5

[1.6]

90.0

[3.5]

Figure 7-10. Space Requirements for the Boxed Processor (side view)

7.5.1 Boxed Intel[®] Core[™]2 Extreme Processor Fan Heatsink Weight

The Boxed Intel[®] Core[™]2 Extreme Processor fan heatsink weight will complies with the socket specifications. See Chapter 5 and the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2) for details on the processor weight and heatsink requirements.

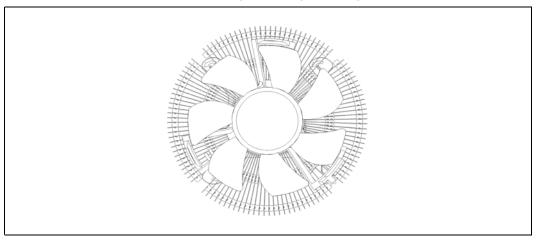
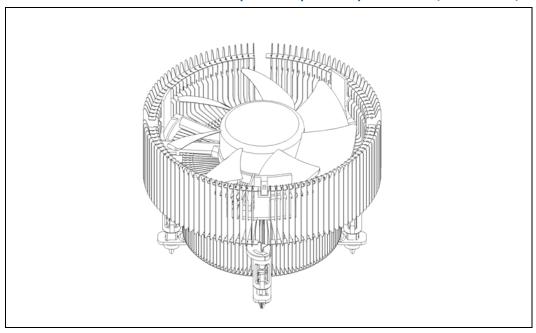



Figure 7-12. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)

§

8 Debug Tools Specifications

8.1 Logic Analyzer Interface (LAI)

Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in debugging Intel[®] Core™2 Extreme processor QX9650 systems. Tektronix and Agilent should be contacted to get specific information about their logic analyzer interfaces. The following information is general in nature. Specific information must be obtained from the logic analyzer vendor.

Due to the complexity of processor systems, the LAI is critical in providing the ability to probe and capture FSB signals. There are two sets of considerations to keep in mind when designing a processor system that can make use of an LAI: mechanical and electrical.

8.1.1 Mechanical Considerations

The LAI is installed between the processor socket and the processor. The LAI lands plug into the processor socket, while the processor lands plug into a socket on the LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between the processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor. System designers must make sure that the keepout volume remains unobstructed inside the system. Note that it is possible that the keepout volume reserved for the LAI may differ from the space normally occupied by the processors heatsink. If this is the case, the logic analyzer vendor will provide a cooling solution as part of the LAI.

8.1.2 Electrical Considerations

The LAI will also affect the electrical performance of the FSB; therefore, it is critical to obtain electrical load models from each of the logic analyzers to be able to run system level simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for electrical specifications and load models for the LAI solution it provides.

§

